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Combining Mathematical and Simulation

Approaches to Understand the Dynamics

of Computer Models

Luis R. Izquierdo, Segismundo S. Izquierdo, José M. Galán,

and José I. Santos

Why Read This Chapter? To learn how to better understand the dynamics of

computer models using both simulation and mathematical analysis. Our starting

point is a computer model which is already implemented and ready to be run; the

objective is to gain a thorough understanding of its dynamics. Combining computer

simulation with mathematical analysis can help to provide a picture of the model

dynamics that could not be drawn by using only one of the two techniques.

Abstract This chapter shows how computer simulation and mathematical analysis

can be used together to understand the dynamics of computer models. For this

purpose, we show that it is useful to see the computer model as a particular

implementation of a formal model in a certain programming language. This formal

model is the abstract entity which is defined by the input-output relation that the

computer model executes, and can be seen as a function that transforms probability

distributions over the set of possible inputs into probability distributions over the set

of possible outputs.

It is shown here that both computer simulation and mathematical analysis are

extremely useful tools to analyse this formal model, and they are certainly comple-

mentary in the sense that they can provide fundamentally different insights on the

same model. Even more importantly, this chapter shows that there are plenty of

synergies to be exploited by using the two techniques together.

Themathematical approach to analyse formalmodels consists in examining the rules

that define the model directly. Its aim is to deduce the logical implications of these rules

for any particular instance to which they can be applied. Our analysis of mathematical
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techniques to study formal models is focused on the theory of Markov Chains, which is

particularly useful to characterise the dynamics of computer models.

In contrast with mathematical analysis, the computer simulation approach does

not look at the rules that define the formal model directly, but instead tries to infer

general properties of these rules by examining the outputs they produce when

applied to particular instances of the input space. Thus, conclusions obtained with

this approach may not be general. On a more positive note, computer simulation

enables us to explore formal models beyond mathematical tractability, and we can

achieve any arbitrary level of accuracy in our computational approximations by

running the model sufficiently many times.

Bearing in mind the relative strengths and limitations of both approaches, this

chapter explains three different ways in which mathematical analysis and computer

simulation can be usefully combined to produce a better understanding of the

dynamics of computer models. In doing so, it becomes clear that mathematical

analysis and computer simulation should not be regarded as alternative – or even

opposed – approaches to the formal study of social systems, but as complementary.

Not only can they provide fundamentally different insights on the same model, but

they can also produce hints for solutions for each other. In short, there are plenty of

synergies to be exploited by using the two techniques together, so the full potential

of each technique cannot be reached unless they are used in conjunction.

11.1 Introduction

This chapter is about how to better understand the dynamics of computer models

using both simulation and mathematical analysis. Our starting point is a computer

model which is already implemented and ready to be run; our objective is to gain a

thorough understanding of its dynamics. Thus, this chapter is not about how to

design, implement, verify, or validate a model; this chapter is about how to better

understand its behaviour.

Naturally, we start by clearly defining our object of study: a computer model.

The term ‘computer model’ can be understood in many different ways – i.e. seen

from many different perspectives –, and not all of them are equally useful for every

possible purpose. Thus, we start by interpreting the term ‘computer model’ in a way

that will prove useful for our objective: to characterise and understand its

behaviour. Once our object of study has been clearly defined, we then describe

two techniques that are particularly useful to understand the dynamics of computer

models: mathematical analysis and computer simulation.

In particular, this chapter will show that mathematical analysis and computer

simulation should not be regarded as alternative – or even opposed – approaches to

the formal study of social systems, but as complementary (Gotts et al. 2003a, b).

They are both extremely useful tools to analyse formal models, and they are

certainly complementary in the sense that they can provide fundamentally different

insights on the same model. Even more importantly, this chapter will show that
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there are plenty of synergies to be exploited by using the two techniques together,

i.e. the full potential of each technique will not be reached until they are used in

conjunction. The remaining of this introduction outlines the structure of the chapter.

Sections 11.2, 11.3 and 11.4 are devoted to explaining in detail what we

understand by ‘computer model’, and they therefore provide the basic framework

for the rest of the chapter. In particular, Sect. 11.2 shows that a computer model can

be seen as an implementation – i.e. an explicit representation – of a certain

deterministic input-output function in a particular programming language. This

interpretation is very useful since, in particular, it will allow us to abstract from

the details of the modelling platform where the computer model has been

programmed, and focus on analysing the formal model that the computer model

implements. This is clarified in Sect. 11.3, which explains that any computer model

can be re-implemented in many different formalisms (in particular, in any sophisti-

cated enough programming language), leading to alternative representations of the

same input-output relation.

Most computer models in the Social Simulation literature make use of pseudo-

random number generators. Section 11.4 explains that – for these cases and given

our purposes – it is useful to abstract from the details of how pseudo-random

numbers are generated, and look at the computer model as an implementation of

a stochastic process. In a stochastic process, a certain input does not necessarily

lead to one certain output only; instead, there are many different paths that the

process may take with potentially different probabilities. Thus, in a stochastic

process a certain input will generally lead to a particular probability distribution

over the range of possible outputs, rather than to a single output only. Stochastic

processes are used to formally describe how a system subjected to random events

evolves through time.

Having explained our interpretation of the term ‘computer model’, Sect. 11.5

introduces and compares the two techniques to analyse formal models that are

assessed in this chapter: computer simulation and mathematical analysis. The

following two sections sketch possible ways in which each of these two techniques

can be used to obtain useful insights about the dynamics of a model. Section 11.8 is

then focused on the joint use of computer simulation and mathematical analysis.

It is shown here that the two techniques can be used together to provide a picture of

the dynamics of the model that could not be drawn by using one of the two

techniques only. Finally, our conclusions are summarised in Sect. 11.9.

11.2 Computer Models as Input-Output Functions

At the most elementary level, a computer model can be seen as an implementation –

i.e. an explicit representation – of a certain deterministic input-output function in a

particular programming language. The word ‘function’ is useful because it
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correctly conveys the point that any particular input given to the computer model

will lead to one and only one output.1 (Obviously, different inputs may lead to the

same output.) Admittedly, however, the word ‘function’ may also mislead the

reader into thinking that a computer model is necessarily simple. The computer

model may be as complex and sophisticated as the programmer wants it to be but,

ultimately, it is just an entity that associates a specific output to any given input,

i.e. a function. In any case, to avoid confusion, we will use the term ‘formal model’

to denote the function that a certain computer model implements.2 To be sure, the

‘formal model’ that a particular computer model implements is the abstract entity

which is defined by the input-output relation that the computer model executes.3

Thus, running a computer model is just finding out the logical implications of

applying a set of unambiguously defined formal rules (which are coded in the

program and define the input-output function or formal model) to a set of inputs

(Balzer et al. 2001). As an example, one could write the computer program

“y ¼ 4x” and apply it to the input “x ¼ 2” to obtain the output “y ¼ 8”. The

output (y ¼ 8), which is fully and unequivocally determined by the input (x ¼ 2)

and the set of rules coded in the program (y ¼ 4x), can be seen as a theorem

obtained by pure deduction ({x ¼ 2; y ¼ 4x} ) y ¼ 8). Naturally, there is no

reason why the inputs or the outputs should be numbers4; they could equally well be

e.g. strings of characters. In the general case, a computer run is a logical theorem

that reads: the output obtained from running the computer simulation follows (with
logical necessity) from applying to the input the algorithmic rules that define the
model. Thus, regardless of its inherent complexity, a computer run constitutes a

perfectly valid sufficiency theorem (see e.g. Axtell 2000).

It is useful to realise that we could always apply the same inference rules

ourselves to obtain – by logical deduction – the same output from the given

input. While useful as a thought, when it comes to actually doing the job, it is

much more convenient, efficient and less prone to errors to let computers derive the

output for us. Computers are inference engines that are able to conduct many

algorithmic processes at a speed that the human brain cannot achieve.

1 Note that simulations of stochastic models are actually using pseudo-random number generators,

which are deterministic algorithms that require a seed as an input.
2 A formal model is a model expressed in a formal system (Cutland 1980). A formal system

consists of a formal language and a deductive apparatus (a set of axioms and inference rules).

Formal systems are used to derive new expressions by applying the inference rules to the axioms

and/or previously derived expressions in the same system.
3 The mere fact that the model has been implemented and can be run in a computer is a proof that

the model is formal (Suber 2002).
4 As a matter of fact, strictly speaking, inputs and outputs in a computer model are never numbers.

We may interpret strings of bits as numbers, but we could equally well interpret the same strings of

bits as e.g. letters. More importantly, a bit itself is already an abstraction, an interpretation we

make of an electrical pulse that can be above or below a critical voltage threshold.
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11.3 Different Ways of Representing the Same Formal Model

A somewhat controversial issue in the Social Simulation literature refers to the

allegedly unique features of some modelling platforms. It is important to realise that

any formal model implemented in a computer model can be re-implemented inmany

different programming languages, leading to exactly the same input-output relation.

Different implementations are just different ways of representing one same formal

model, much in the same way that one can say ‘Spain’ or ‘España’ to express the

same concept in different languages: same thing, different representation, that’s all.

Thus, when analysing the dynamics of a computer model, it is useful to abstract

from the details of the modelling platform that has been used to implement the

computer model, and focus strictly on the formal model it represents, which could

be re-implemented in any sophisticated enough5 modelling platform. To be clear,

let us emphasise that any computer model implemented in Objective-C (e.g. using

Swarm) can be re-implemented in Java (e.g. using RePast or Mason), NetLogo,

SDML, Mathematica# or Matlab#. Similarly, any computer model can be

expressed as a well-defined mathematical function (Epstein 2006; Leombruni and

Richiardi 2005; Richiardi et al. 2006).

Naturally, the implementation of a particular formal model may be more

straightforward in some programming languages than in others. Programming

languages differ in where they position themselves in the well-known trade-offs

between ease of programming, functionality and performance; thus, different

programming languages lead to more or less natural and more or less efficient

implementations of any given formal model. Nonetheless, the important point is

this: whilst we may have different implementations of the same formal model, and

whilst each of these implementations may have different characteristics (in terms of

e.g. code readability), ultimately they are all just different representations of the

same formal model, and they will therefore return the same output when given the

same input.

In the same way that using one or another formalism to represent a particular

formal model will lead tomore or less natural implementations, different formalisms

also make more or less apparent certain properties of the formal model they

implement. For example, we will see in this chapter that representing a computer

model as a Markov chain, i.e. looking at the formal model implemented in a

5A sufficient condition for a programming language to be “sophisticated enough” is to allow for

the implementation of the following three control structures:

• Sequence (i.e. executing one subprogram, and then another subprogram),

• Selection (i.e. executing one of two subprograms according to the value of a boolean variable,

e.g. IF[boolean ¼¼ true]-THEN[subprogram1]-ELSE[subprogram2]), and

• Iteration (i.e. executing a subprogram until a boolean variable becomes false, e.g. WHILE

[boolean ¼¼ true]-DO[subprogram]).

Any programming language that can combine subprograms in these three ways can implement

any computable function; this statement is known as the “structured program theorem” (Böhm and

Jacopini 1966; Harel 1980; Wikipedia 2007).

11 Combining Mathematical and Simulation Approaches to Understand the. . . 239



computer model through Markov’s glasses, can make apparent various features of

the computer model that may not be so evident without such glasses. In particular, as

we will show later, Markov theory can be used to find out whether the initial

conditions of a model determine its asymptotic dynamics or whether they are

actually irrelevant in the long term. Also, the theory can reveal whether the model

will sooner or later be trapped in an absorbing state.

11.4 ‘Stochastic’ Computer Models as Stochastic Processes

Most computer models in the Social Simulation literature contain stochastic

components. This section argues that, for these cases and given our purposes, it is

convenient to revise our interpretation of computer models as deterministic input-
output relations, abstract from the (deterministic) details of how pseudo-random

numbers are generated, and reinterpret the term ‘computer model’ as an implemen-

tation of a stochastic process. This interpretation will prove useful in most cases

and, importantly, does not imply any loss of generality: even if the computer model

to be analysed does not contain any stochastic components, our interpretation will

still be valid.

In the general case, the computer model to be analysed will make use of (what

are meant to be) random numbers, i.e. the model will be stochastic. The word

‘stochastic’ requires some clarification. Strictly speaking, there does not exist a

truly stochastic computer model, but one can approximate randomness to a very

satisfactory extent by using pseudo-random number generators. The pseudo-

random number generator is a deterministic algorithm that takes as input a value

called the random seed, and generates a sequence of numbers that approximates the

properties of random numbers. The sequence is not truly random in that it is

completely determined by the value used to initialise the algorithm, i.e. the random

seed. Therefore, if given the same random seed, the pseudo-random number

generator will produce exactly the same sequence of (pseudo-random) numbers.

(This fact is what made us define a computer model as an implementation of a

certain deterministic input-output function in Sect. 11.2.)

Fortunately, the sequences of numbers provided by current off-the-shelf pseudo-

random number generators approximate randomness remarkably well. This basically

means that, for most intents and purposes in this discipline, it seems safe to assume

that the pseudo-random numbers generated in one simulation run will follow the

intended probability distributions to a satisfactory degree. The only problem we

might encounter appears when running several simulations which we would like to

be statistically independent. As mentioned above, if we used the same random seed

for every run, we would obtain the same sequence of pseudo-random numbers, i.e. we

would obtain exactly the same results. How can we truly randomly select a random
seed? Fortunately, for most applications in this discipline, the state of the computer

system at the time of starting a new run can be considered a truly random variable;

and, conveniently, if no seed is explicitly provided to the pseudo-random number
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generator, most platforms generate a seed from the state of the computer system

(e.g. using the time). When this is done, the sequences of numbers obtained with

readily available pseudo-random number generators approximate statistical

randomness and independence remarkably well.

Given that – for most intents and purposes in this discipline – we can safely

assume that pseudo-random numbers are random and independent enough, we

dispense with the qualifier ‘pseudo’ from now on for convenience. Since every

random variable in the model follows a specific probability distribution, the

computer model will indeed generate a particular probability distribution over the

range of possible outputs. Thus, to summarise, a computer model can be usefully

seen as the implementation of a stochastic process, i.e. a function that transforms

any given input into a certain probability distribution over the set of possible

outputs (Fig. 11.1).

Seeing that we can satisfactorily simulate random variables, note that studying

the behaviour of a model that has been parameterised stochastically does not

introduce any conceptual difficulties. In other words, we can study the behaviour

of a model that has been parameterised with probability distributions rather than

certain values. An example would be a model where agents start at a random initial

location.

To conclude this section, let us emphasise an important corollary of the previous

paragraphs: any statistic that we extract from a parameterised computer model
follows a specific probability distribution (even if the values of the input

parameters have been expressed as probability distributions).6 Thus, a computer

model can be seen as the implementation of a function that transforms probability

distributions over the set of possible inputs into probability distributions over the set

of possible outputs (Fig. 11.2). The rest of the chapter is devoted to characterising

this function.

COMPUTER
MODEL

Pseudorandom
number

generator

INPUT
SPACE

OUTPUT
SPACE

Fig. 11.1 A computer model can be usefully seen as the implementation of a function that

transforms any given input into a certain probability distribution over the set of possible outputs

6 Note that statistics extracted from the model can be of any nature, as long as they are unambigu-

ously defined. For example, they can refer to various time-steps, and only to certain agents (e.g.

“average wealth of female agents in odd time-steps from 1 to 99”).
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11.5 Tools to Understand the Behaviour of Formal Models

Once it is settled that a computer model can be seen as a particular implementation of a

(potentially stochastic) function in a certain programming language, let us refer to such

a function as the ‘formal model’ that the computer model implements. As mentioned

before, this formalmodel can be expressed inmanydifferent formalisms – in particular,

it can always be expressed as a set of well defined mathematical equations (Leombruni

and Richiardi 2005) – and our objective consists in understanding its behaviour. To do

that, we count with two very useful tools: mathematical analysis7 and computer

simulation.

The advantages and limitations of these two tools to formally study social

systems have been discussed at length in the literature (see e.g. Axtell 2000; Axtell

and Epstein 1994; Edmonds 2005; Gilbert 1999; Gilbert and Troitzsch 1999; Gotts

et al. 2003a; Holland and Miller 1991; Ostrom 1988). Here we only highlight the

most prominent differences between these two techniques (see Fig. 11.3).

In broad terms, when using mathematical analysis, one examines the rules that

define the formal model directly, and tries to draw general conclusions about these

rules. These conclusions are obtained by using logical deduction; hence they follow

with logical necessity from the premises of the formal model (and the axioms of the

mathematics employed). The aim when using mathematical analysis is usually to

“solve” the formal system (or, most often, certain aspects of it) by producing

general closed-form solutions that can be applied to any instance of the whole

input set (or, at least, to large portions of the input set). Since the inferences

obtained with mathematical analysis pertain to the rules themselves, such

inferences can be safely particularised to any specific parameterisation of the

model, even if such a parameterisation was never explicitly contemplated when

analysing the model mathematically. This greatly facilitates conducting sensitivity

analyses and assessing the robustness of the model.

Computer simulation is a rather different approach to the characterisation of the

formal model (Epstein 2006; Axelrod 1997a). When using computer simulation,

COMPUTER
MODEL

Pseudorandom
number

generator

INPUT
SPACE

OUTPUT
SPACE

Fig. 11.2 A computer model can be seen as the implementation of a function that transforms

probability distributions over the set of possible inputs into probability distributions over the set of

possible outputs

7We use the term “mathematical analysis” in its broadest sense, i.e. we do not refer to any

particular branch of mathematics, but to the general use of (any type of) mathematical technique

to analyse a system.
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one often treats the formal model as a black box, i.e. a somewhat obscure abstract

entity that returns certain outputs when provided with inputs. Thus, the path to

understand the behaviour of the model consists in obtaining many input-output

pairs and – using generalisation by induction – inferring general patterns about how

the rules transform the inputs into the outputs (i.e. how the formal model works).

Importantly, the execution of a simulation run, i.e. the logical process that

transforms any (potentially stochastic) given input into its corresponding (poten-

tially stochastic) output is pure deduction (i.e. strict application of the formal rules

that define the model). Thus, running the model in a computer provides a formal

proof that a particular input (together with the set of rules that define the model) is

sufficient to generate the output that is observed during the simulation. This first part

of the computer simulation approach is therefore, in a way, very “mathematical”:

outputs obtained follow with logical necessity from applying to the inputs the

algorithmic rules that define the model.

In contrast, the second part of the computer simulation approach, i.e. inferring

general patterns from particular instances of input-output pairs, can only lead to

probable – rather than necessarily true – conclusions.8 The following section

explains how to rigorously assess the confidence we can place on the conclusions

obtained using computer simulation, but the simple truth is irrefutable: inferences

obtained using generalisation by induction can potentially fail when applied to

instances that were not used to infer the general pattern. This is the domain of

statistical extrapolation.

COMPUTER
MODEL 

 
 
 

Pseudorandom 
number 

generator 

INPUT 
SPACE 

OUTPUT 
SPACE 

Mathematical 
Analysis 

Computer 
Simulation 

… … … … 

Fig. 11.3 In general terms, mathematical analysis tends to examine the rules that define the

formal model directly. In contrast, computer simulation tries to infer general properties of such

rules by looking at the outputs they produce when applied to particular instances of the input space

8Unless, of course, all possible particular instances are explored.

11 Combining Mathematical and Simulation Approaches to Understand the. . . 243



So why bother with computer simulation at all? The answer is clear: computer

simulation enables us to study formal systems in ways that go beyond mathematical

tractability. This role should not be underestimated: most models in the Social

Simulation literature are mathematically intractable, and in such cases computer

simulation is our only chance to move things forward. As a matter of fact, the

formal models that many computer programs implement are often so complicated

and cumbersome that the computer code itself is not that far from being one of the

best descriptions of the formal model that can be provided.

Computer simulation can be very useful even when dealing with formal models

that are mathematically tractable. Valuable uses of computer simulation in these

cases include conducting insightful initial explorations of the model and presenting

dynamic illustrations of its results.

And there is yet another important use of computer simulation. Note that

understanding a formal model in depth requires identifying the parts of the model

(i.e. the subset of rules) that are responsible for generating particular (sub)sets of

results or properties of results. Investigating this in detail often involves changing

certain subsets of rules in the model, so one can pinpoint which subsets of rules are

necessary or sufficient to produce certain results. Importantly, changing subsets

of rules can make the original model mathematically intractable and in such

(common) cases, computer simulation is, again, our only hope. In this context,

computer simulation can be very useful to produce counter-examples. This

approach is very common in the literature of e.g. evolutionary game theory,

where several authors (see e.g. Hauert and Doebeli 2004; Imhof et al. 2005;

Izquierdo and Izquierdo 2006; Lieberman et al. 2009; Nowak and May 1992;

Nowak and Sigmund 1992, 1993; Santos et al. 2006; Traulsen et al. 2006) resort

to computer simulations to assess the implications of assumptions made in mathe-

matically tractable models (e.g. the assumptions of “infinite populations” and

“random encounters”).

It is important to note that the fundamental distinction between mathematical

analysis and computer simulation as presented here is not about whether one uses

pen and paper or computers to analyse formal models. We can follow either approach

with or without computers, and it is increasingly popular to do mathematical analysis

with computers. Recent advancements in symbolic computation have opened up

a new world of possibilities to conduct mathematical analyses (using e.g.

Mathematica#). In other words, nowadays it is perfectly possible to use computers

to directly examine the rules that define a formal model (see Fig. 11.3).

Finally, as so often in life, things are not black or white, but involve some shade

of grey. Similarly, most models are not tractable or intractable in mathematical

terms; most often they are partially tractable. It is in these cases where an adequate
combination of mathematical analysis and computer simulation is particularly

useful. We illustrate this fact in Sect. 11.8, but first let us look at each technique

separately. The following two sections provide some guidelines on how computer

simulation (Sect. 11.6) and mathematical analysis (Sect. 11.7) can be usefully

employed to analyse formal models.
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11.6 Computer Simulation: Approximating the Exact

Probability Distribution by Running the Model

The previous sections have argued that any statistic obtained from a (stochastically or

deterministically) parameterised model follows a specific probability distribution.

The statistic could be anything as long as it is unambiguously defined; in particular, it

could refer to one or several time-steps, and to one or various subcomponents of the

model. Ideally, one would like to calculate the exact probability distribution for the

statistic using mathematical analysis, but this will not always be possible. In contrast,

using computer simulation we will always be able to approximate this probability

distribution to any arbitrary level of accuracy; this section provides basic guidelines

on how to do that.

The output probability distribution – which is fully and unequivocally deter-

mined by the input distribution – can be approximated to any degree of accuracy by

running enough simulation runs. Note that any specific simulation run will be

conducted with a particular certain value for every parameter (e.g. a particular

initial location for every agent), and will produce one and only one particular

certain output (see Fig. 11.3). Thus, in order to infer the probability distribution

over the set of outputs that a particular probability distribution over the set of inputs

leads to, there will be a need to run the model many times (with different random

seeds); this is the so-called Monte Carlo method.

The method is straightforward: obtain as many random samples as possible (i.e.

run as many independent simulations as possible), since this will get us closer and

closer to the exact distribution (by the law of large numbers). Having conducted a

large number of simulation runs, the question that naturally comes to mind is: How

close to the exact distribution is the one obtained by simulation?

To illustrate how to assess the quality of the approximation obtained by simulation,

we use CoolWorld, a purpose-built agent-based model (Gilbert 2007) implemented in

NetLogo 4.0 (Wilensky 1999). A full description of the model, an applet and the

source code can be found at the dedicated model webpage http://luis.izquierdo.name/

models/coolworld. For our purposes, it suffices to say that in CoolWorld there is

a population of agents called walkers, who wander around a 2-dimensional grid

made of square patches; some of the patches are empty whilst others contain a

house (see Fig. 11.4). Patches are at a certain predefined temperature, and walkers

tend to walk towards warmer patches, staying for a while at the houses they encounter

in their journey.

Let us assume that we are interested in studying the number of CoolWorld

walkers staying in a house in time-step 50. Initial conditions (which involve 100

walkers placed at a random location) are unambiguously defined at the model

webpage and can be set in the implementation of CoolWorld provided by clicking

on the button “Special conditions”. Figure 11.4 shows a snapshot of CoolWorld

after having clicked on that button.

As argued before, given that the (stochastic) initial conditions are unambiguously

defined, the number of CoolWorld walkers in a house after 50 time-steps will follow
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a specific probability distribution that we are aiming to approximate. For that, let us

assume that we run 200 runs, and plot the relative frequency of the number of

walkers in a patch with a house after 50 time-steps (see Fig. 11.5).

Figure 11.5 does not provide all the information that can be extracted from the

data gathered. In particular, we can plot error bars showing the standard error for

each calculated frequency without hardly any effort.9 Standard errors give us

information about the error we may be incurring when estimating the exact

probabilities with the empirical frequencies. Another simple task that can be

conducted consists in partitioning the set of runs into two batteries of approximately

Fig. 11.4 Snapshot of CoolWorld. Patches are coloured according to their temperature: the higher

the temperature, the darker the shade of grey. Houses are coloured in black, and form a circle

around the central patch. Walkers are coloured in grey, and represented as a person if standing on a
patch without a house, and as a smiling face if standing on a patch with a house. In the latter case,

the white label indicates the number of walkers in the same house

9 The frequency of the event “there are i walkers in a patch with a house” calculated over n
simulation runs can be seen as the mean of a sample of n i.i.d. Bernouilli random variables where

success denotes that the event occurred and failure denotes that it did not. Thus, the frequency

f is the maximum likelihood (unbiased) estimator of the exact probability with which the event

occurs. The standard error of the calculated frequency f is the standard deviation of the sample

divided by the square root of the sample size. In this particular case, the formula reads:

Std: error ð f ; nÞ ¼ ð f ð1� f Þ=ðn� 1ÞÞ1=2

Where f is the frequency of the event, n is the number of samples, and the standard deviation of

the sample has been calculated dividing by (n – 1).
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equal size and comparing the two distributions. If the two distributions are

not similar, then there is no point in proceeding: we are not close to the exact

distribution, so there is a need to run more simulations.

Figures 11.6 and 11.7 show the data displayed in Fig. 11.5 partitioned in two

batteries of 100 simulation runs, including the standard errors. Figures 11.6 and 11.7

also show the exact probability distribution we are trying to approximate, which has

been calculated using mathematical methods that are explained later in this chapter.
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Fig. 11.5 Relative frequency distribution of the number of walkers in a house after 50 time-steps,

obtained by running CoolWorld 200 times, with initial conditions set by clicking on “Special

conditions”
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Fig. 11.6 In darker grey: Relative frequency distribution of the number of walkers in a house after

50 time-steps, obtained by running CoolWorld 100 times (Battery A), with initial conditions set by

clicking on “Special conditions”. In lighter grey: Exact probability distribution (Calculated using

Markov chain analysis)
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Figures 11.6 and 11.7 indicate that 100 simulation runs may not be enough to

obtain a satisfactory approximation to the exact probability distribution. On the

other hand, Figs. 11.8 and 11.9 show that running the model 50,000 times does

seem to get us close to the exact probability distribution. The standard error, which
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Fig. 11.7 In darker grey: Relative frequency distribution of the number of walkers in a house after

50 time-steps, obtained by running CoolWorld 100 times (Battery B), with initial conditions set by

clicking on “Special conditions”. In lighter grey: Exact probability distribution (Calculated using

Markov chain analysis)
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Fig. 11.8 In darker grey: Relative frequency distribution of the number of walkers in a house after

50 time-steps, obtained by running CoolWorld 50,000 times (Battery A), with initial conditions set

by clicking on “Special conditions”. In lighter grey: Exact probability distribution (Calculated

using Markov chain analysis)
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is inversely proportional to the square root of the sample size (i.e. the number of

runs), is naturally much lower in these latter cases.

When, like in this example, the space of all possible outcomes in the distribution

under analysis is finite (the number of walkers in a house must be an integer

between 0 and 100), one can go further and calculate confidence intervals for the

obtained frequencies. This is easily conducted when one realises that the exact

probability distribution is a multinomial. Genz and Kwong (2000) show how to

calculate these confidence intervals.

To conclude this section, let us emphasise that all that has been written here

applies to any statistic obtained from any computer model. In particular, the statistic

may refer to predefined regimes (e.g. “number of time-steps between 0 and 100

where there are more than 20 walkers in a house”) or to various time-steps (e.g.

“total number of walkers in a house in odd time-steps in between time-steps 50 and

200”). These statistics, like any other one, follow a specific probability distribution

that can be approximated to any degree of accuracy by running the computer model.

11.7 Mathematical Analysis: Time-Homogenous

Markov Chains

The whole range of mathematical techniques that can be used to analyse formal

systems is too broad to be reviewed here. Instead, we focus on one specific

technique that seems to us particularly useful to analyse Social Simulation models:
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Fig. 11.9 In darker grey: Relative frequency distribution of the number of walkers in a house after

50 time-steps, obtained by running CoolWorld 50,000 times (Battery B), with initial conditions set

by clicking on “Special conditions”. In lighter grey: Exact probability distribution (Calculated

using Markov chain analysis)
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Markov chain analysis. Besides, there are multiple synergies to be exploited by

using Markov chain analysis and computer simulation together, as we will see in the

next section.

Our first objective is to learn how to represent a particular computer model as a

time-homogeneous Markov chain. This alternative representation of the model will

allow us to use several simple mathematical results that will prove useful to

understand the dynamics of the model. We therefore start by describing time-

homogeneous Markov chains.

11.7.1 What Is a Time-Homogeneous Markov Chain?

Consider a system that in time-step n ¼ {1,2,3,. . .} may be in one of a finite

number of possible states S ¼ {s1, s2,. . ., sM}. The set S is called the state space;

in this chapter we only consider finite state spaces.10 Let the sequence of random

variables Xn 2 S represent the state of the system in time-step n. As an example,

X3 ¼ s9 means that at time n ¼ 3 the system is in state s9. The system starts at a

certain initial state X0 and moves from one state to another. The system is stochastic

in that, given the present state, the system may move to one or another state with a

certain probability (see Fig. 11.10). The probability that the system moves from

state i to state j in one time-step, P(Xn+1 ¼ j | Xn ¼ i), is denoted by pi,j. As an

example, in the Markov chain represented in Fig. 11.10, p4,6 equals 0 since the

system cannot go from state 4 to state 6 in one single time-step. The system may

also stay in the same state i, and this occurs with probability pi,i. The probabilities
pi,j are called transition probabilities and they are often arranged in a matrix,

namely the transition matrix P.
Implicitly, our definition of transition probabilities assumes two important

properties about the system:

(a) The system has the Markov property. This means that the present state

contains all the information about the future evolution of the system that can

be obtained from its past, i.e. given the present state of the system, knowing the

past history about how the system reached the present state does not provide

any additional information about the future evolution of the system. Formally,

PðXnþ1 ¼ xnþ1 j Xn ¼ xn; Xn�1 ¼ xn�1; . . . ; X0 ¼ x0Þ ¼ PðXnþ1 ¼ xnþ1 j Xn ¼ xnÞ

(b) In this chapter we focus on time-homogeneous Markov chains, i.e. Markov

chains with time-homogeneous transition probabilities. This basically means

that transition probabilities pi,j are independent of time, i.e. the one-step transi-

tion probability pi,j depends on i and j but is the same at all times n. Formally,

10 The term ‘Markov chain’ allows for countably infinite state spaces too (Karr 1990).
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PðXnþ1 ¼ j jXn ¼ iÞ ¼ PðXn ¼ j jXn�1 ¼ iÞ ¼ pi;j

The crucial step in the process of representing a computer model as a time-

homogeneous Markov chain (THMC) consists in identifying an appropriate set of

state variables. A particular combination of specific values for these state variables

will define one particular state of the system. Thus, the challenge consists in

choosing the set of state variables in such a way that the computer model can be

represented as a THMC. In other words, the set of state variables must be such that

one can see the computer model as a transition matrix that unambiguously

determines the probability of going from any state to any other state.

Example: A Simple Random Walk

Let us consider a model of a simple 1-dimensional random walk and try to see it as a

THMC. In this model – which can be run and downloaded at the dedicated model

webpage http://luis.izquierdo.name/models/randomwalk – there are 17 patches in

line, labelled with the integers between 1 and 17. A random walker is initially

placed on one of the patches. From then onwards, the random walker will move

randomly to one of the spatially contiguous patches in every time-step (staying still

is not an option). Space does not wrap around, i.e. patch 1’s only neighbour is

patch 2 (Fig. 11.11).

This model can be easily represented as a THMC by choosing the agent’s

position (e.g. the number of the patch she is standing on) as the only state variable.

To be sure, note that defining the state of the system in this way, it is true that there

is a fixed probability of going from any state to any other state, independent of time.

The transition matrix P ¼ [pi,j] corresponding to the model is:

P ¼ ½pi;j� ¼

0 1 0 � � � 0

0:5 0 0:5 0 ..
.

0 0:5 0 0:5 0

0 0:5 0 0:5 0

. .
. . .

. . .
. . .

. . .
.

0 0:5 0 0:5 0

..

.
0 0:5 0 0:5

0 � � � 0 1 0

2
6666666666664

3
7777777777775

(11.1)
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Initial 
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Final 
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Fig. 11.10 Schematic

transition diagram of a

Markov chain. Circles denote
states and directed arrows
indicate possible transitions

between states. In this figure,

thicker circles and arrows
represent one possible path

where the initial state X0 is s8
and the final state is s2
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Where, as explained above, pi,j is the probability P(Xn+1 ¼ j j Xn ¼ i) that the
system will be in state j in the following time-step, knowing that it is currently in

state i.

11.7.2 Transient Distributions of Finite THMCs

The analysis of the dynamics of THMCs is usually divided into two parts: transient

dynamics (finite time) and asymptotic dynamics (infinite time). The transient

behaviour is characterised by the distribution of the state of the system Xn for a

fixed time-step n � 0. The asymptotic behaviour (see Sects. 11.7.3 and 11.7.4) is

characterised by the limit of the distribution of Xn as n goes to infinity, when this

limit exists.

This section explains how to calculate the transient distribution of a certain

THMC, i.e. the distribution of Xn for a fixed n � 0. In simple words, we are after a

vector a(n) containing the probability of finding the process in each possible state in
time-step n. Formally, a(n) ¼ [a1

(n), . . ., aM
(n)], where ai

(n) ¼ P(Xn ¼ i), denotes
the distribution of Xn for a THMC withM possible states. In particular, a(0) denotes
the initial distribution over the state space, i.e. ai

(0) ¼ P(X0 ¼ i). Note that there is
no problem in having uncertain initial conditions, i.e. probability functions over the

space of possible inputs to the model.

Fig. 11.11 Snapshot of the 1-dimensional random walk applet. Patches are arranged in a

horizontal line on the top right corner of the figure; they are labelled with integers, and coloured

in shades of grey according to the number of times that the random walker has visited them: the

higher the number of visits, the darker the shade of blue. The plot beneath the patches shows the

time series of the random walker’s position
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It can be shown that one can easily calculate the transient distribution in time-

step n, simply by multiplying the initial conditions by the n-th power of the

transition matrix P.

Proposition 1. a(n) ¼ a(0) · Pn

Thus, the elements p(n)i,j of P
n represent the probability that the system is in state j

after n time-steps having started in state i, i.e. p(n)i,j ¼ P(Xn ¼ j j X0 ¼ i). A

straightforward corollary of Proposition 1 is that a(n+m) ¼ a(n) · Pm.

As an example, let us consider the 1-dimensional random walk again. Imagine

that the random walker starts at an initial random location, i.e. a(0) ¼ [1/17, . . .,
1/17]. The exact distribution of the walker’s position in time-step 100 would then be

a(100) ¼ a(0) · P100. This distribution is represented in Fig. 11.10, together with an

empirical distribution obtained by running the model 50,000 times (Fig. 11.12).

Having obtained the probability function over the states of the system for any

fixed n, namely the probability mass function of Xn, it is then straightforward to

calculate the distribution of any statistic that can be extracted from the model. As

argued in the previous sections, the state of the system fully characterises it, so any
statistic that we obtain about the computer model in time-step nmust be, ultimately,

a function of {X0, X1, . . ., Xn}.

Admittedly, the transition matrix of most computer models cannot be easily

derived, or it is unfeasible to operate with it. Nonetheless, this apparent drawback is

not as important as one might expect. As we shall see below, it is often possible to

infer many properties of a THMC even without knowing the exact values of its

transition matrix, and these properties can yield useful insights about the dynamics

of the associated process. Knowing the exact values of the transition matrix allows

us to calculate the exact transient distributions using Proposition 1; this is desirable

but not critical, since we can always approximate these distributions by conducting

many simulation runs, as explained in Sect. 11.6.
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Fig. 11.12 Probability function of the position of the 1-dimensional random walker in time-step

100, starting at an initial random location
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11.7.3 Important Concepts

This section presents some basic concepts that will prove useful to analyse the

dynamics of computer models. The notation used here follows the excellent book

on stochastic processes written by Kulkarni (1995).

Definition 1: Accessibility

A state j is said to be accessible from state i if starting at state i there is a chance that
the system may visit state j at some point in the future. By convention, every state is

accessible from itself. Formally, a state j is said to be accessible from state i if for
some n � 0, p(n)i,j > 0.

Note that j is accessible from i 6¼ j if and only if there is a directed path from i to
j in the transition diagram. In that case, we write i ! j. If i ! j we also say that i
leads to j. As an example, in the THMC represented in Fig. 11.10, s2 is accessible
from s12 but not from s5. Note that the definition of accessibility does not depend on
the actual magnitude of p(n)i,j, only on whether it is exactly zero or strictly positive.

Definition 2: Communication

A state i is said to communicate with state j if i ! j and j ! i.
If i communicates with j we also say that i and j communicate and write i$j. As

an example, note that in the simple random walk presented in Sect. 11.7.1, every

state communicates with every other state. It is worth noting that the relation

“communication” is transitive, i.e.

i $ j; j $ k ) i $ k:

Definition 3: Communicating Class

A set of states C � S is said to be a communicating class if:

• Any two states in the communicating class communicate with each other.

Formally,

i 2 C; j 2 C ) i $ j

• The set C is maximal, i.e. no strict superset of a communicating class can be a

communicating class. Formally,

i 2 C; i $ j ) j 2 C

As an example, note that in the simple random walk presented in Sect. 11.7.1

there is one single communicating class that contains all the states. In the THMC

represented in Fig. 11.10 there are four communicating classes: {s2}, {s5}, {s10},
{s1, s3, s4, s6, s7, s8, s9, s11, s12}.

Definition 4: Closed Communicating Class (i.e. Absorbing Class). Absorbing

State

A communicating class C is said to be closed if no state within C leads to any state

outside C. Formally, a communicating class C is said to be closed if i 2 C and j =2 C
implies that j is not accessible from i.
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Note that once a Markov chain visits a closed communicating class, it cannot

leave it. Hence we will sometimes refer to closed communicating classes as

“absorbing classes”. This latter term is not standard in the literature, but we find

it useful here for explanatory purposes. Note that if a Markov chain has one single

communicating class, it must be closed.

As an example, note that the communicating classes {s10} and {s1, s3, s4, s6, s7, s8,
s9, s11, s12} in the THMC represented in Fig. 11.10 are not closed, as they can be

abandoned. On the other hand, the communicating classes {s2} and {s5} are indeed

closed, since they cannot be abandoned.When a closed communicating class consists

of one single state, this state is called absorbing. Thus, s2 and s5 are absorbing states.
Formally, state i is absorbing if and only if pi,i ¼ 1 and pi,j ¼ 0 for i 6¼ j.

Proposition 2. Decomposition Theorem (Chung 1960)

The state space S of any Markov chain can be uniquely partitioned as follows:

S ¼ C1 [ C2 [ . . . [ Ck [ T

where C1, C2, . . ., Ck are closed communicating classes, and T is the union of all

other communicating classes.

Note that we do not distinguish between non-closed communicating classes: we

lump them all together into T. Thus, the unique partition of the THMC represented in

Fig. 11.10 is S ¼ {s2} [ {s5} [ {s1, s3, s4, s6, s7, s8, s9, s10, s11, s12}. The simple

randomwalkmodel presented in Sect. 11.7.1 has one single (closed) communicating

class C1 containing all the possible states, i.e. S � C1.

Definition 5: Irreducibility

A Markov chain is said to be irreducible if all its states belong to a single closed

communicating class; otherwise it is called reducible. Thus, the simple random walk

presented in Sect. 11.7.1 is irreducible, but theTHMC represented in Fig. 11.10 is reducible.

Definition 6: Transient and Recurrent States

A state i is said to be transient if, given that we start in state i, there is a non-zero
probability that we will never return back to i. Otherwise, the state is called

recurrent. A Markov chain starting from a recurrent state will revisit it with

probability 1, and hence revisit it infinitely often. On the other hand, a Markov

chain starting from a transient state has a strictly positive probability of never

coming back to it. Thus, a Markov chain will visit any transient state only finitely

many times; eventually, transient states will not be revisited anymore.

Definition 7: Periodic and Aperiodic States. Periodic and Aperiodic Commu-

nicating Classes

A state i has period d if any return to state i must occur in multiples of d time-steps.

If d ¼ 1, then the state is said to be aperiodic; otherwise (d > 1), the state is said to

be periodic with period d. Formally, state i’s period d is the greatest common

divisor of the set of integers n > 0 such that p(n)i,i > 0. For our purposes, the
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concept of periodicity is only relevant for recurrent states. As an example, note that

every state in the simple random walk presented in Sect. 11.7.1 is periodic with

period 2.

An interesting and useful fact is that if i$j, then i and j must have the same

period (see Theorem 5.2. in Kulkarni (1995)). In particular, note that if pi,i > 0 for

any i, then the communicating class to which i belongs must be aperiodic. Thus, it

makes sense to qualify communicating classes as periodic with period d, or

aperiodic. A closed communicating class with period d can return to its starting

state only at times d, 2d, 3d, . . .
The concepts presented in this section will allow us to analyse the dynamics of

any finite Markov chain. In particular, we will show that, given enough time, any

finite Markov chain will necessarily end up in one of its closed communicating

classes (i.e. absorbing classes).

11.7.4 Limiting Behaviour of Finite THMCs

This section is devoted to characterising the limiting behaviour of a THMC, i.e.

studying the convergence (in distribution) of Xn as n tends to infinity. Specifically,

we aim to study the behaviour of ai
(n) ¼ P(Xn ¼ i) as n tends to infinity. From

Proposition 1 it is clear that analysing the limiting behaviour of Pn would enable us

to characterise ai
(n). There are many introductory books in stochastic processes that

offer clear and simple methods to analyse the limiting behaviour of THMCs when

the transition matrix P is tractable (see e.g. Chap. 5 in (Kulkarni 1999), Chaps. 2–4

in (Kulkarni 1995), Chap. 3 in (Janssen and Manca 2006) or the book chapter

written by Karr (1990)). Nonetheless, we focus here on the general case, where

operating with the transition matrix P may be computationally unfeasible.

11.7.4.1 General Dynamics

The first step in the analysis of any THMC consists in identifying all the closed

communicating classes, so we can partition the state space S as indicated by the

decomposition theorem (see proposition 2). The following proposition (Theorems

3.7 and 3.8 in Kulkarni (1995)) reveals the significance of this partition:

Proposition 3. General Dynamics of Finite THMCs

Consider a finite THMC that has been partitioned as indicated in proposition 2. Then:

1. All states in T (i.e. not belonging to a closed communicating class) are transient.

2. All states inCv (i.e. in any closed communicating class) are recurrent; v2 {1, 2, . . ., k}.

Proposition 3 states that sooner or later the THMC will enter one of

the absorbing classes and stay in it forever. Formally, for all i 2 S and all j 2 T:
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lim
n!1 p

ðnÞ
i;j ¼ 0, i.e. the probability of finding the process in a state belonging to a non-

closed communicating class goes to zero as n goes to infinity. Naturally, if the

initial state already belongs to an absorbing class Cv, then the chain will never

abandon such a class. Formally, for all i 2 Cv and all j =2 Cv: p
(n)

i,j ¼ 0 for all n � 0.

As an example of the usefulness of Proposition 3, consider the THMC

represented in Fig. 11.10. This THMC has only two absorbing classes: {s2} and

{s5}. Thus, the partition of the state space is: S ¼ {s2} [ {s5} [ {s1, s3, s4, s6, s7, s8,
s9, s10, s11, s12}. Hence, applying Proposition 3 we can state that the process will

eventually end up in one of the two absorbing states, s2 or s5. The probability of

ending up in one or the other absorbing state depends on the initial conditions a(0)

(and on the actual numbers pi,j in the transition matrix, of course). Slightly more

formally, the limiting distribution of Xn exists, but it is not unique, i.e. it depends on

the initial conditions.

11.7.4.2 Dynamics Within Absorbing Classes

The previous section has explained that any simulation run will necessarily end up in

a certain absorbing class; this section characterises the dynamics of a THMC that is

already “trapped” in an absorbing class. This is precisely the analysis of irreducible

Markov chains, since irreducible Markov chains are, by definition, Markov chains

with one single closed communicating class (see definition 5). In other words, one

can see any THMC as a set of transient states T plus a finite number of irreducible

Markov sub-chains.

Irreducible THMCs behave significantly different depending on whether they

are periodic or not. The following sections characterise these two cases.

Irreducible and Aperiodic THMCs

Irreducible and aperiodic THMCs are often called ergodic. In these processes the

probability function of Xn approaches a limit as n tends to infinity. This limit is

called the limiting distribution, and is denoted here by π. Formally, the following

limit exists and is unique (i.e. independent of the initial conditions ai
(0)):

lim
n!1 a

ðnÞ
i ¼ πi > 0 i 2 S

Thus, in ergodic THMCs the probability of finding the system in each of its

states in the long run is strictly positive and independent of the initial conditions

(Theorems 3.7 and 3.15 in Kulkarni (1995)). As previously mentioned, calculating

such probabilities may be unfeasible, but we can estimate them sampling many

simulation runs at a sufficiently large time-step.
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Importantly, in ergodic THMCs the limiting distribution π coincides with the

occupancy distribution π*, which is the long-run fraction of the time that the

THMC spends in each state.11 Naturally, the occupancy distribution π* is also

independent of the initial conditions. Thus, in ergodic THMCs, running just one

simulation for long enough (which enables us to estimate π*) will serve to estimate

π just as well.

The question that comes to mind then is: How long is long enough? I.e. when

will I know that the empirical distribution obtained by simulation resembles the

limiting distribution π? Unfortunately there is no answer for that. The silver lining is
that knowing that the limiting and the occupancy distribution coincide, that they

must be stable in time, and that they are independent of the initial conditions,

enables us to conduct a wide range of tests that may tell us when it is certainly not
long enough. For example, we can run a battery of simulations and study the

empirical distribution over the states of the system across samples as time goes

by. If the distribution is not stable, then we have not run the model for long enough.

Similarly, since the occupancy distribution is independent of the initial conditions,

one can run several simulations with widely different initial conditions, and

compare the obtained occupancy distributions. If the empirical occupancy

distributions are not similar, then we have not run the model for long enough.

Many more checks can be conducted.

Admittedly, when analysing a computer model one is often interested not so

much in the distribution over the possible states of the system, but rather in the

distribution of a certain statistic. The crucial point is to realise that if the statistic is a

function of the state of the system (and all statistics that can be extracted from the

model are), then the limiting and the occupancy distributions of the statistic exist,

coincide and are independent of the initial conditions.

Irreducible and Periodic THMCs

In contrast with aperiodic THMCs, the probability distribution of Xn in periodic

THMCs does not approach a limit as n tends to infinity. Instead, in an irreducible

THMC with period d, as n tends to infinity, Xn will in general cycle through d
probability functions depending on the initial distribution.

As an example, consider the simple random walk again (which is irreducible

and periodic, with period 2), and assume that the random walker starts at patch

number 1 (i.e. X0 ¼ 1). Given these settings, it can be shown that

11 Formally, the occupancy of state i is defined as:

π�i ¼ lim
n!1

EðNiðnÞÞ
nþ 1

whereNi(n) denotes the number of times that the THMCvisits state i over the time span {0, 1,. . ., n}.
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lim
n!1 a

ð2nÞ
i ¼ 1
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In particular, the limits above show that the random walker cannot be at a patch

with an even number in any even time-step, and he cannot be at a patch with an odd

number in any odd time-step. In contrast, if the random walker started at patch

number 2 (i.e. X0 ¼ 2), then the limits above would be interchanged.

Fortunately, every irreducible (periodic or aperiodic) THMC does have a unique

occupancy distribution π*, independent of the initial conditions (see Theorem 5.19

in Kulkarni (1999)). In our particular example, this is:

π� ¼ 1
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;
1
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;
1
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;
1
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;
1
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;
1

16
;
1
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� �

Thus, the long-run fraction of time that the system spends in each state in any

irreducible THMC is unique (i.e. independent of the initial conditions). This is a

very useful result, since any statistic which is a function of the state of the system

will also have a unique occupancy distribution independent of the initial conditions.

As explained before, this occupancy distribution can be approximated with one

single simulation run, assuming it runs for long enough.

11.8 Synergies Between Mathematical Analysis

and Computer Simulation

In this section we present various ways in which mathematical analysis and

computer simulation can be combined to produce a better understanding of the

dynamics of a model. Note that a full understanding of the dynamics of a model

involves not only characterising (i.e. describing) them, but also finding out why
such dynamics are being observed, i.e. identifying the subsets of rules that are

necessary or sufficient to generate certain aspects of the observed dynamics. To do

this, one often has to make changes in the model, i.e. build supporting models that

differ only slightly from the original one and may yield useful insights about its

dynamics. These supporting models will sometimes be more tractable (e.g. if

heterogeneity or stochasticity are averaged out) and sometimes more complex

(e.g. if interactions that were assumed to be global in the original model may

only take place locally in the supporting model). Thus, for clarity, we distinguish

three different cases and deal with them in turn (see Fig. 11.13):
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1. Characterisation of the dynamics of a model.

2. Moves towards greater mathematical tractability. This involves creating and

studying supporting models that are simpler than the original one.

3. Moves towards greater mathematical complexity. This involves creating and

studying supporting models that are less tractable than the original one.

11.8.1 Characterising the Dynamics of the Model

There are many types of mathematical techniques that can be usefully combined

with computer simulation to characterise the dynamics of a model (e.g. Stochastic

Approximation Theory (Benveniste et al. 1990; Kushner and Yin 1997)), but for

limitations of space we focus here on Markov chain analysis only.

When using Markov chain analysis to characterise the dynamics of a model it

may happen that the transition matrix can be easily computed and we can operate

with it, or it may not. In the former case – which is quite rare in Social Simulation

models –, one can provide a full characterisation of the dynamics of the model just

by operating with the transition matrix (see Proposition 1 and the beginning of

Sect. 11.7.4 for references). In general, however, deriving and operating with the

transition matrix may be unfeasible, and it is in this common case where there is a

lot to gain in using Markov chain analysis and computer simulation together. The

overall method goes as follows:

• Use Markov chain analysis to assess the relevance of initial conditions and to

identify the different regimes in which the dynamics of the model may end up

trapped.

• Use the knowledge acquired in the previous point to design suitable computa-

tional experiments aimed at estimating the exact probability distributions for the

relevant statistics (which potentially depend on the initial conditions).

Fig. 11.13 To fully understand the dynamics of a model, one often has to study supporting models

that differ only slightly from the original one. Some of these supporting models may be more

tractable whilst others may be more complex

260 L.R. Izquierdo et al.



The following describes this overall process in greater detail. Naturally, the first

step consists in finding an appropriate definition of the state of the system, as

explained in Sect. 11.7.1. The next step is to identify all the closed communicating

(i.e. absorbing) classes in the model Cv (v 2 {1, 2, . . ., k}). This allows us to

partition the state space of the Markov chain as the union of all the closed

communicating classes C1, C2, . . ., Ck in the model plus another class T containing

all the states that belong to non-closed communicating classes. Izquierdo et al.

(2009) illustrate how to do this in ten well-known models in the Social Simulation

literature.

In most cases, conducting the partition of the state space is not as difficult as it

may seem at first. In particular, the following proposition provides some simple

sufficient conditions that guarantee that the computer model contains one single

aperiodic absorbing class, i.e. the finite THMC that the computer model implements

is irreducible and aperiodic (i.e. ergodic).

Proposition 4. Sufficient Conditions for Irreducibility and Aperiodicity

1. If it is possible to go from any state to any other state in one single time-step

(pi,j > 0 for all i 6¼ j) and there are more than two states, then the THMC is

irreducible and aperiodic.

2. If it is possible to go from any state to any other state in a finite number of time-

steps (i$j for all i 6¼ j), and there is at least one state in which the system may

stay for two consecutive time-steps (pi,i > 0 for some i), then the THMC is

irreducible and aperiodic.

3. If there exists a positive integer n such that p(n)i,j > 0 for all i and j, then the

THMC is irreducible and aperiodic (Janssen and Manca 2006, p. 107).

If one sees the transition diagram of the Markov chain as a (directed) network,

the conditions above can be rewritten as:

1. The network contains more than two nodes and there is a directed link from

every node to every other node.

2. The network is strongly connected and there is at least one loop.

3. There exists a positive integer n such that there is at least one walk of length n
from any node to every node (including itself).

Izquierdo et al. (2009) show that many models in the Social Simulation literature

satisfy one of these sufficient conditions (e.g. Epstein and Axtell’s (1996)

Sugarscape, Axelrod’s (1986) metanorms models, Takahashi’s (2000) model of

generalized exchange, and Miller and Page’s (2004) standing ovation model with

noise). This is important since, as explained in Sect. 11.7.4.2, in ergodic THMCs

the limiting and the occupancy distributions of any statistic exist, coincide and are

independent of the initial conditions (so running just one simulation for long

enough, which enables us to estimate the occupancy distribution, will serve to

estimate the limiting distribution just as well).

Let us return to the general case. Having partitioned the state space, the analysis

of the dynamics of the model is straightforward: all states in T (i.e. in any finite
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communicating class that is not closed) are transient, whereas all states in Cv (i.e. in

any finite closed communicating class) are recurrent. In other words, sooner or later

any simulation run will enter one of the absorbing classes Cv and stay in it forever.

Here computer simulation can play a crucial role again, since it allows us to

estimate the probability of ending up in each of the absorbing classes for any

(stochastic or deterministic) initial condition we may be interested in. A case-in-

point would be a model that has only a few absorbing states, or where various

absorbing states are put together into only a few groups. Izquierdo et al. (2009)

analyse models that follow that pattern: Axelrod’s (1997b) model of dissemination

of culture, Arthur’s (1989) model of competing technologies, and Axelrod and

Bennett’s (1993) model of competing bimodal coalitions. CharityWorld (Polhill

et al. 2006; Izquierdo and Polhill 2006) is an example of a model with a unique

absorbing state.

The following step consists in characterising the dynamics of the system within

each of the absorbing classes. Once the system has entered a certain absorbing class

Cv, it will remain in it forever exhibiting a unique conditional12 occupancy distri-

bution πv* over the set of states that compose Cv. Naturally, the same applies to any

statistic we may want to study, since all statistics that can be extracted from the

model are a function of the state of the system.

The conditional occupancy distribution πv* denotes the (strictly positive) long-

run fraction of the time that the system spends in each state of Cv given that the

system has entered Cv. Importantly, the conditional occupancy distribution πv* is

the same regardless of the specific state through which the system entered Cv. The

role of simulation here is to estimate these conditional occupancy distributions for

the relevant statistics by running the model for long enough.

Finally, recall that some absorbing classes are periodic and some are aperiodic.

Aperiodic absorbing classes have a unique conditional limiting distribution πv
denoting the long-run (strictly positive) probability of finding the system in each

of the states that compose Cv given that the system has entered Cv. This conditional

limiting distribution πv coincides with the conditional occupancy distribution πv*
and, naturally, is also independent of the specific state through which the system

entered Cv. (Again, note that this also applies to the distribution of any statistic, as

they are all functions of the state of the system, necessarily.)

In contrast with aperiodic absorbing classes, periodic absorbing classes do

not generally have a unique limiting distribution; instead, they cycle through d
probability functions depending on the specific state through which the system

entered Cv (where d denotes the period of the periodic absorbing class). This is

knowledge that one must take into account at the time of estimating the relevant

probability distributions using computer simulation.

Thus, it is clear that Markov chain analysis and computer simulation greatly

complement each other. Markov chain analysis provides the overall picture of the

dynamics of the model by categorising its different dynamic regimes and

12Given that the system has entered the absorbing class Cv.
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identifying when and how initial conditions are relevant. Computer simulation uses

this information to design appropriate computational experiments that allow us to

quantify the probability distributions of the statistics we are interested in. As

explained above, these probability distributions can always be approximated with

any degree of accuracy by running the computer model several times.

There are several examples of this type of synergetic combination of Markov

chain analysis and computer simulation in the literature. Galán and Izquierdo

(2005) analysed Axelrod’s (1986) agent-based model as a Markov chain, concluded

that the long-run behaviour of that model was independent of the initial conditions,

in contrast to the initial conclusions of the original analysis. Galán and and

Izquierdo (2005) also used computer simulation to estimate various probability

distributions. Ehrentreich (2002, 2006) used Markov chain analysis on the Artificial

Stock Market (Arthur et al. 1997; LeBaron et al. 1999) to demonstrate that the

mutation operator implemented in the model is not neutral to the learning rate, but

introduces an upward bias.13 A more positive example is provided by Izquierdo

et al. (2007, 2008b), who used Markov chain analysis and computer simulation to

confirm and advance various insights on reinforcement learning put forward by

Macy and Flache (2002) and Flache and Macy (2002).

11.8.2 Moves Towards Greater Mathematical Tractability:
Simplifications

There are at least two types of simplifications that can help us to better understand

the dynamics of a model. One consists in studying specific parameterisations of the

original model that are thought to lead to particularly simple dynamics, or to more

tractable situations (Gilbert and Terna 2000; Gilbert 2007). Examples of this type of

activity would be to run simulations without agents or with very few agents, explore

the behaviour of the model using extreme parameter values, model very simple

environments, etc. This activity is common practice in the field (see e.g. Gotts et al.

2003c, d).

A second type of simplification consists in creating an abstraction of the original

model (i.e. a model of the model) which is mathematically tractable. An example of

one possible abstraction would be to study the expected motion of the dynamic

system (see the studies conducted by Galán and Izquierdo (2005), Edwards et al.

(2003), Castellano et al. (2000), Huet et al. (2007), Mabrouk et al. (2007), Vilà

(2008) and Izquierdo et al. (2007, 2008b) for illustrations of mean-field

approximations). Since these mathematical abstractions do not correspond in a

one-to-one way with the specifications of the formal model, any results obtained

with them will not be conclusive in general, but they may give us insights

13 This finding does not refute some of the most important conclusions obtained by the authors of

the original model.
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suggesting areas of stability and basins of attraction, clarifying assumptions,

assessing sensitivity to parameters, or simply giving the option to illustrate

graphically the expected dynamics of the original model. This approach can also

be used as a verification technique to detect potential errors and artefacts (Galán

et al. 2009).

11.8.3 Moves Towards Greater Mathematical Complexity:
Extensions

As argued before, understanding the dynamics of a model implies identifying the

set of assumptions that are responsible for particular aspects of the obtained results.

Naturally, to assess the relevance of any assumption in a model, it is useful to

replace it with other alternatives, and this often leads to greater mathematical

complexity.14

Ideally, the evaluation of the significance of an assumption is conducted by

generalisation, i.e. by building a more general model that allows for a wide range of

alternative competing assumptions, and contains the original assumption as a

particular case. An example would be the introduction of arbitrary social networks

of interaction in a model where every agent necessarily interacts with every other

agent. In this case, the general model with arbitrary networks of interaction would

correspond with the original model if the network is assumed to be complete, but

any other network could also be studied within the same common framework.

Another example is the introduction of noise in deterministic models.

Building models by generalisation is useful because it allows for a transparent,

structured and systematic way of exploring the impact of various alternative

assumptions that perform the same role in the model, but it often implies a loss in

mathematical tractability (see e.g. Izquierdo and Izquierdo 2006). Thus, it is often

the case that a rigorous study of the impact of alternative assumptions in a model

requires being prepared to slide up and down the tractability continuum depicted in

Fig. 11.13 (Gotts et al. 2003b). In fact, all the cases that are mentioned in the rest of

this section involved greater complexity than the original models they considered,

and computer simulation had to be employed to understand their dynamics.

In the literature there are many examples of the type of activity explained in this

section. For example, Klemm et al. studied the relevance of various assumptions in

Axelrod’s model of dissemination of culture (1997b) by changing the network

topology (Klemm et al. 2003a), investigating the role of dimensionality (Klemm

14 This is so because many assumptions we make in our models are, to some extent, for the sake of

simplicity. As a matter of fact, in most cases the whole purpose of modelling is to build an

abstraction of the world which is simpler than the world itself, so we can make inferences about the

model that we cannot make directly from the real world (Edmonds 2001; Galán et al. 2009;

Izquierdo et al. 2008a).
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et al. 2003b, 2005), and introducing noise (Klemm et al. 2003c). Another example

is given by Izquierdo and Izquierdo (2007), who analysed the impact of using

different structures of social networks in the efficiency of a market with quality

variability.

In the context of decision-making and learning, Flache and Hegselmann (1999)

and Hegselmann and Flache (2000) compared two different decision-making

algorithms that a set of players can use when confronting various types of social

dilemmas. Similarly, Takadama et al. (2003) analysed the effect of three different

learning algorithms within the same model.

Several authors, particularly in the literature of Game Theory, have investigated

the effect of introducing noise in the decision-making of agents. This is useful not

only to investigate the general effect of potential mistakes or experimentation, but

also to identify the stochastic stability of different outcomes (see Sect. 10 in

Izquierdo et al. (2009)). An illustrative example is given by Izquierdo et al.

(2008b), who investigate the reinforcement learning algorithm proposed by Bush

andMosteller (1955) using both mathematical analysis and simulation, and find that

the inclusion of small quantities of randomness in players’ decisions can change the

dynamics of the model dramatically.

Another assumption investigated in the literature is the effect of different spatial

topologies (see e.g. Flache and Hegselmann (2001), who generalised two of their

cellular automata models by changing their – originally regular – grid structure).

Finally, as mentioned in Sect. 11.5, it is increasingly common in the field

of evolutionary game theory to assess the impact of various assumptions using

computer simulation (see e.g. Galán and Izquierdo 2005; Santos et al. 2006;

Traulsen et al. 2006; Izquierdo and Izquierdo 2006).

11.9 Summary

In this chapter we have provided a set of guidelines to understand the dynamics of

computer models using both simulation and mathematical analysis. In doing so, it

has become clear that mathematical analysis and computer simulation should not be

regarded as alternative – or even opposed – approaches to the formal study of social

systems, but as complementary (Gotts et al. 2003a, b). Not only can they provide

fundamentally different insights on the same model, but they can also produce hints

for solutions for each other. In short, there are plenty of synergies to be exploited by

using the two techniques together, so the full potential of each technique cannot be

reached unless they are used in conjunction.

To understand the dynamics of any particular computer model, we have seen that

it is useful to see the computer model as the implementation of a function that

transforms probability distributions over the set of possible inputs into probability

distributions over the set of possible outputs. We refer to this function as the formal

model that the computer model implements.
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The mathematical approach to analyse formal models consists in examining the

rules that define the model directly; the aim is to deduce the logical implications of

these rules for any particular instance to which they can be applied. Our analysis

of mathematical techniques to study formal models has been focused on the theory

of Markov Chains. This theory is particularly useful for our purposes since

many computer models can be meaningfully represented as time-homogenous

Markov chains.

In contrast with mathematical analysis, the computer simulation approach does

not look at the rules that define the formal model directly, but instead tries to infer

general properties of these rules by examining the outputs they produce when

applied to particular instances of the input space. Thus, in the simulation approach,

the data is produced by the computer using strict logical deduction, but the general

patterns about how the rules transform the inputs into the outputs are inferred using

generalisation by induction. Thus, in the general case – and in contrast with

mathematical analysis –, the inferences obtained using computer simulation will

not be necessarily correct in a strict logical sense; but, on the other hand, computer

simulation enables us to explore formal models beyond mathematical tractability,

and the confidence we can place on the conclusions obtained with this approach can

be rigorously assessed in statistical terms. Furthermore, as shown in this chapter, we

can achieve any arbitrary level of accuracy in our computational approximations by

running the model sufficiently many times.

Bearing in mind the relative strengths and limitations of both approaches, we

have identified at least three different ways in which mathematical analysis and

computer simulation can be usefully combined to produce a better understanding of

the dynamics of computer models.

The first synergy appears at the time of characterising the dynamics of the formal

model under study. To do that, we have shown how Markov chain analysis can be

used to provide an overall picture of the dynamics of the model by categorising its

different dynamic regimes and identifying when and how initial conditions are

relevant. Having conducted such an analysis, one can then use computer simulation

to design appropriate computational experiments with the aim of quantifying the

probability distributions of the variables we are interested in. These probability

distributions can always be approximated with any degree of accuracy by running

the computer model several times.

The two other ways in which mathematical analysis and computer simulation can

be combined derive from the fact that understanding the dynamics of a model

involves not only characterising (i.e. describing) them, but also finding out why
such dynamics are being observed (i.e. discovering causality). This often implies

building supporting models that can be simpler or more complex than the original

one. The rationale to move towards simplicity is to achieve greater mathematical

tractability, and this often involves studying particularly simple parameterisations of

the original model, and creating abstractions which are amenable to mathematical

analysis. The rationale to move towards complexity is to assess the relevance of

specific assumptions, and it often involves building generalisations of the original

model to explore the impact of competing assumptions that can perform the same

role in the model but may lead to different results.
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Let us conclude by encouraging the reader to put both mathematical analysis and

computer simulation in their backpack, and be happy to glide up and down the

tractability spectrum where both simple and complex models lie. The benefits are

out there.
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Further Reading

Firstly we suggest three things to read to learn more about Markov Chain models.

Grinstead and Snell (1997) provides an excellent introduction to the theory of finite

Markov Chains, with many examples and exercises. Häggström (2002) gives a clear

and concise introduction to Probability theory and Markov Chain theory, and then

illustrates the usefulness of these theories by studying a range of stochastic

algorithms with important applications in optimisation and other problems in

computing. One of the algorithms covered is the Markov chain Monte Carlo

method. Finally, Kulkarni (1995) provides a rigorous analysis of many types of

useful stochastic processes, e.g. discrete and continuous time Markov Chains,

renewal processes, regenerative processes, and Markov regenerative processes.

The reader may find three other papers helpful. Izquierdo et al. (2009) analyses the

dynamics of tenwell-knownmodels in the social simulation literature using the theory

ofMarkovChains, and is thus a good illustration of the approach in practice within the

context of social simulation.15 Epstein (2006) is a more general discussion, treating a

variety of foundational and epistemological issues surrounding generative explanation

in the social sciences, and discussing the role of agent-based computational models in

generative social science. Finally, Leombruni and Richiardi (2005) usefully discusses

several issues surrounding the interpretation of simulation dynamics and the

generalisation of the simulation results. For a different approach to analysing the

dynamics of a simulation model we refer the interested reader to Chap. 9 in this

volume (Evans et al. 2013).

15 This comment was added by the editors as the authors are too modest to so describe their own

work.
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