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Abstract   Artificial Economics is one of the fastest growing approaches to analyse complex 

socio-economic systems. In this paper we present our views on the distinguishing features of 

Artificial Economics and on how it relates to Theoretical Economics – the field that in our 

opinion lies closest to Artificial Economics. In this context, we discuss various reasons why 

research conducted following the Artificial Economics approach can be useful, and provide 

general guidelines on how it can be done. We argue that Artificial Economics and Theoretical 

Economics share the same goals, do not differ conceptually as much as it is sometimes 

perceived, and their approaches are certainly complementary. 
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1 Introduction 

Economics at the end of the twentieth century is a discipline that concerns itself with models, 

not theories –  Weintraub (2002, p. 7) 

 

Building a model of any complex system usually requires making a difficult trade-off between 

realism and mathematical tractability. Most often, the closer the assumptions of the model are 

to the real world, the less likely it is that the model can be analysed using mathematical 

deduction only.  

 

In the context of the analysis of socio-economic systems, Theoretical Economics (TE)5 has 

traditionally focused on building models that could be solved analytically using mathematical 

 

1 Some of the ideas presented in this paper can be found written in Spanish in Izquierdo et al. (2016). 
2 Departamento de Ingeniería de Organización. Universidad de Burgos, Spain. 
3 BioEcoUva Research Institute on Bioeconomy. Departamento de Organización de Empresas, Universidad de Valladolid, Spain. 
4 InSiSoc (Excellence Research Group of Castilla y León, Spain). 

5 In this paper we consider Theoretical Economics and Mathematical Economics as synonyms. 
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deduction. The focus is so strong that one could define TE as the discipline within Economics 

that uses mathematics to describe and understand economic phenomena. This mathematical 

approach has obvious advantages, but it is not free of caveats. Models that are amenable to 

mathematical analysis tend to compromise on realism. Thus, oftentimes the usefulness of the 

models analysed in TE is limited by the lack of realism of their assumptions, which are 

nonetheless imposed to ensure mathematical tractability. In short, one could say that in the 

trade-off between realism and mathematical tractability, TE opts for ensuring mathematical 

tractability, even at the potential expense of suffering an important loss in realism.  

 

Artificial Economics (AE) is a discipline that uses an alternative (and often complementary) 

approach to the analysis of socio-economic systems. Like TE, AE aims at improving our 

understanding of socio-economic processes by building and analysing formal models 

(Amblard, 2010). However, unlike ET, researchers in AE are willing to give up mathematical 

tractability –at least to some extent– if by doing so they can build more realistic models that 

will lead to inferences that are (perceived to be) more useful.  

 

As an example, consider the analysis of financial markets. Under the TE approach, it is 

customary to assume that trading agents have rational expectations and infinite computational 

capacities. These assumptions are not made because researchers necessarily think that real 

traders behave like that, but mainly because such assumptions are useful to obtain a clean 

analytical model of asset pricing (and they are deemed sufficiently realistic, presumably). On 

the other hand, researchers in AE tend to reject those assumptions (which they consider 

excessively unrealistic), and instead view financial markets as “interacting groups of learning, 

boundedly-rational agents” (LeBaron, 2006). They then build models accordingly, even if their 

assumptions imply that the exploration of the market dynamics in their models have to be 

conducted using computer simulation, and no analytical solution can be derived (Arthur et al., 

1997; LeBaron, Arthur and Palmer, 1999; Ehrentreich, 2008). 

 

Given that the approaches followed in TE and AE seem to be so fundamentally different, and 

considering the fact that TE is a more established and widely accepted field, before following 

an AE approach, many questions may come to mind: How do the two approaches differ exactly? 

Is AE sufficiently sound and rigorous? How can we interpret the results obtained in AE? What 

are the advantages and disadvantages of the AE approach? These are some of the questions on 
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which we hope to shed some light here. Specifically, this paper is structured in three sections 

aimed at reflecting on the following three issues: 

 

What is Artificial Economics?  

In this section we provide a working definition of AE and we place AE within a general 

framework of scientific modelling. The main reason to do this is to be able to compare AE with 

TE –the field that in our opinion lies closest to AE. Setting the two disciplines within the same 

general framework will allow us to identify the aspects where they are similar and those where 

they clearly differ. 

 

Why Artificial Economics?  

Socio-economic processes are naturally complex, and therefore difficult to analyse and 

understand using mathematical deduction only. This is so because the simplifications required 

to achieve mathematical tractability often weaken the correspondence between the real world 

and the model used to understand it so much that sometimes the resulting model ends up being 

a caricature of the real-world target system. The overall rationale to conduct AE is that it can 

certainly help us to improve our understanding of socioeconomic systems by building and 

analysing more realistic models. AE can also help us be aware of the implications of the 

simplifications that one has to make under the TE approach in order to ensure mathematical 

tractability. In this section we elaborate on these issues and outline some of the many specific 

reasons why the computational approach followed in AE can definitely be useful. 

 

How can we do Artificial Economics?  

In this final section we discuss some of the approaches, methods and tools in AE that –in our 

view– seem most rigorous and which present the greatest potential to develop the field in a 

scientifically sound way. 

2 What is Artificial Economics? 

We define AE as a research field that aims at improving our understanding of socioeconomic 

processes with the help of computer simulation. This definition establishes both a means 

(computer simulation) and a goal (understanding), both of which will be explained in detail 

below. For now, let us point out that the definition leaves out some uses of computer simulation 

in Economics, such as black-box prediction (i.e. prediction without understanding). With this 
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definition, we do not mean to undermine the value of pure prediction; we simply wish to keep 

our discussion of AE concrete and within a clearly delimited scope. In practical terms, our 

definition implies that the AE approach goes beyond the mere generation of data using 

computer simulation; we require that such data is used to provide explanations, i.e. to infer 

causal relationships among system variables in the real world. Note that it is perfectly possible 

to provide good predictions despite not having explanations for them, but a good explanation 

can always yield falsifiable predictions, at least at some level (Troitzsch, 2009; Hassan et al., 

2013).   

 

In terms of methodology, AE can be included as part of Computational Economics (see Figure 

1), which is a discipline that “explores the intersection of economics and computation”, 

according to the Computational Economics Society.  

 

 

Figure 1. Venn diagram illustrating the logical relations between models in Computational 

Economics, Artificial Economics, and Agent-based Computational Economics. The area of each 

shape is not meant to convey any meaning. 

Computational economics is a broad field that includes very diverse areas.6 The four volumes 

of the Handbook of Computational Economics include topics such as computational methods, 

algorithms, numerical approximations and programming languages that are useful for solving 

standard economic models (Amman, Kendrick and Rust, 1996), foundations and applications 

of Agent-based Computational Economics (Tesfatsion and Judd, 2006; Hommes and LeBaron, 

 

6 Nonetheless, there do exist monographs (e.g. Kendrick, Mercado, and Amman 2006) and specific courses (e.g. Kendrick, Mercado, 

and Amman 2006; Kendrick 2007) on Computational Economics. 
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2018)7, and even software and hardware aspects of numerical analysis (Schmedders and Judd, 

2014). The (sub-)field Agent-based Computational Economics (ACE), which is part of 

Computational Economics, is particularly similar to Artificial Economics, and the two overlap 

to a great extent (Figure 1). A widely accepted definition of ACE is “the computational study 

of economic processes modeled as dynamic systems of interacting agents” (Tesfatsion, 2006, 

p. 832). The emphasis in ACE is on the explicit representation of individual agents and their 

dynamic interactions, i.e. on the use of agent-based modelling. This requirement is absent in 

AE, which can encompass models where agents are not explicitly and individually represented. 

Thus, while most models in ACE would fit our definition of AE, and vice versa, one can also 

think of models that fit in AE but not in ACE (such as system dynamics models used to 

understand socio-economic processes (Radzicki, 2011)) and also models that would fit in ACE 

but not in AE (e.g. agent-based models used exclusively for prediction, not to provide 

explanations), though this latter case is less common. 

 

The following sections are devoted to discussing the two terms in our definition of AE that 

require further elaboration: understanding and computer simulation. 

2.1 Understanding 

All models are wrong but some are useful  – Box (1979, p. 202) 

 

By understanding we mean uncovering causality, i.e. inferring causal relations between 

observables; and the way this is done in AE is through the construction of models.8 A model is 

an abstraction of a real-world system where some of the complexity of the system has been 

purposefully left out. The rationale to undertake such a process of abstraction –which inevitably 

occurs within a certain context (Edmonds, 2007) and implies some loss of descriptive 

accuracy– is the hope that the model will help us gain insights beyond those we can reach 

without the model. The type of models designed and analysed in AE are formal models, like in 

Theoretical Economics; but they are implemented in a programming language (rather than in a 

mathematical formalism) so computers can be used to explore their behaviour. 

 

 

7 Volume 2 of the Handbook of Computational Economics (Tesfatsion and Judd, 2006) includes several chapters on the foundations 

and methodological aspects of agent-based computational economics, while volume 4 (Hommes and LeBaron, 2018) puts a greater 

emphasis on how to model heterogeneity and on fitting and explaining empirical data. 
8 If we take the meaning of the term model in its broadest sense, we believe that understanding necessarily requires the creation of 

(not necessarily formal) models. 
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Thus, researchers in AE build formal models of (certain aspects of) socioeconomic processes 

in order to understand them better. The leap from the real world to the formal model naturally 

raises a crucial question: how is a formal model, i.e. an entity created by a researcher and which 

belongs to the universe of formal systems, going to help inferring causality in a natural system 

that belongs to the external world?9 This is a question that is relevant not only to AE, but also 

to TE; as a matter of fact, it is a crucial question in Philosophy of Science (Rosen, 2012). 

 

In some scientific fields, such as Physics, there are mathematical models that can describe and 

predict the real world so accurately that it could almost be thought that “Mathematics is the 

language in which God has written the universe” (attributed to Galileo Galilei). However, 

mathematical models have not been so successful in describing and predicting socio-economic 

processes. In fact, by the end of the 20th century, it was not hard to find prestigious 

mathematicians publicly stating that “most mathematical economics was unimportant 

mathematically and useless economically” (Putnam, 1975).   

  

In any case, the rationale to create formal models in any scientific field is to be able to derive 

inferences of the type: “The assumptions of the model logically imply [derived propositions]”. 

The assumptions of a formal model are a set of axioms and inference rules expressed in a 

formal language. Axioms are statements that are postulated to be true; inference rules are 

functions that take one or more statements as inputs and produce new statements (Mendelson, 

1997). Importantly, inference rules are assumed to be truth-preserving, i.e. if their inputs are 

true, their outputs are also true.10 

Therefore, departing from the axioms we can derive new true statements (i.e. theorems) by 

simply applying the inference rules directly to the axioms and/or previously derived theorems. 

This deductive, truth-preserving and somewhat mechanical procedure allows us to obtain 

(some of) the logical consequences of (some of) the model assumptions. The task of repeatedly 

applying inference rules to axioms and/or to previously derived theorems is generally 

conducted by a computer (in AE) or by a human being (in TE).  

 

 

9 We use the term “natural system” in Rosen’s (2012, p. 45) sense: “Roughly speaking, a natural system comprises some aspect of the 

external world which we wish to study. […] We use the adjective “natural” to distinguish these systems from the formal systems 

which we create to represent and model them”.  
10 An important rule of inference is modus ponens. Modus ponens takes two statements as inputs: one of them is a conditional 

statement of the form p→q (a.k.a. material implication), which is often read “If p is true, then q is true” or “p implies q”. The other 

input is the antecedent p of the conditional statement p→q. The output of modus ponens is the consequent q. So, whenever statements 

p and p→q appear in a model, modus ponens allows us to infer q with logical validity. 
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An example may clarify these arguments. Consider the following version of the Schelling-

Sakoda model of spatial segregation (Sakoda, 1971; Schelling, 1971)11, which we henceforth 

call M, for Model. The assumptions of M are (see Figure 2): 

– There is a 20x20 grid containing 133 blue agents and 133 orange agents. 

– Initially, agents are distributed at random in distinct grid cells. 

– Agents may be happy or unhappy. 

– Each individual agent is happy if at least 40% of its (Moore) neighbours are of its same 

colour. Otherwise the agent is unhappy (see Figure 2).  

– In each iteration of the model, one unhappy agent is randomly selected to move to a 

random empty cell in the grid. 

 

Figure 2. Illustration of the 20x20 grid of Schelling-Sakoda model M. 

Using Markov chain analysis, it can be shown that every realisation of this stochastic model M 

necessarily ends up in one out of many possible absorbing states where every agent is happy, 

and then no more changes occur in the model (Izquierdo et al. 2009). The usual spatial pattern 

at any one of such absorbing states shows a significant degree of segregation between agents 

of different colours (see Figure 3). 

 

11 The model presented here is not an exact instance of neither Schelling’s nor Sakoda’s family of models, since –for the sake of 

simplicity– here we assume that unhappy agents move to a random location. For details, see (Hegselmann, 2017, footnote 124). The 

model we present here was proposed by Edmonds and Hales (2005) and can be downloaded from Izquierdo et al. (2009, appendix B).  
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Figure 3. Illustration of two representative absorbing states of Schelling-Sakoda model M. 

To quantify the level of segregation, let us define –for each realisation of the model– the final 

segregation index as the average percentage of neighbours of the same colour (across agents) 

at the final state where no more changes occur. The final segregation index of the stochastic 

Schelling-Sakoda model M described above follows a certain probability distribution that we 

call X, which –in principle– could be computed analytically, and for which Figure 4 offers an 

approximation.  

 

Figure 4. Estimated probability distribution of the final segregation index, computed running 

the model 106 times. All standard errors are below 10-3.  

Therefore, as explained above, one could establish an implication of the form Antecedent → 

Consequent, where the Antecedent is “assumptions in M” and the Consequent is “the 

probability distribution of the final segregation index is X”.  
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Nonetheless, in contrast to the logical implication obtained in the formal model, our final aim 

is to infer causality (Cause  Effect) in the real world within a certain context (Edmonds, 

2011). An example of the type of causal relation we may be seeking with the Schelling-Sakoda 

model M could be: “Mildly segregationist preferences  Clearly distinctive patterns of spatial 

segregation (i.e. ghettos)”. How can such a causal relation be inferred from the implication 

obtained with the model? The key to infer causality in a natural system from an implication 

statement derived with a formal model is to establish a strong analogy between the following 

three pairs of entities (Edmonds, 2001; see Figure 5):  

 

Figure 5. Uncovering causality in the real world using an implication derived with a formal 

model. Photo of houses by Breno Assis on Unsplash. 

• Antecedents in the formal model with Causes in the natural system. There should be a strong 

correspondence between a) the axioms or propositions postulated in the formal model, and 

b) certain variables and relations among them in the real world. 

• Consequents in the formal model with Effects in the natural system. There should be a strong 

correspondence between a) the inferences implied by the antecedents in the formal model 

and b) certain variables in the real world.  

• Implication in the formal model with Causality in the natural system. 

Naturally, the interpretation of the propositions in the formal system lies at the heart of this 

correspondence between the formal and the natural system. The correspondence is often made 

explicit (or forced) by giving to the formal entities the same name as their corresponding 
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entities in the natural system, as when scientists talk about e.g. agents going to work or paying 

taxes in their models. 

 

The sounder the analogy between the formal system and the natural system, the more 

confidence can be placed on the conclusions obtained with the whole modelling exercise. 

Unfortunately, the ability to derive formal implications that adequately capture causal relations 

in a natural system seems to be more an art than a well-codified protocol. This skill is often 

taught implicitly during the training of a scientist, rather than explicitly imparted (Edmonds, 

2007). Naturally, that does not mean that all conceivable logical implications or causal 

inferences are equally useful. There are clear criteria against which they can be assessed, e.g.: 

– Antecedents should be general. The less restrictive the axioms, the greater their potential 

to be used. 

– The formal implication should be valid (i.e. it should be impossible for the antecedent to 

be true and the consequent to be false). 

– Consequents should be specific. The more restrictive the consequents, the greater their 

potential to yield useful predictions. 

– Causes should have great scope, i.e. there should be many real-world situations where the 

causes are present.  

– Effects should be concrete and precise. 

– The causal relation should be empirically falsifiable (and should not have been falsified) 

and insightful (i.e. relevant and not obvious, or even better, counterintuitive). 

Note that the criteria outlined above refer to formal implications and causal relations, not to the 

model used to infer these relations. Models are just means, not ends in themselves (Grimm et 

al., 2006, 2010). They are tools that can be used to derive implications that will hopefully 

correspond to causal mechanisms in the real world. A good model is one that helps us derive 

useful formal implications and causal inferences.  

 

Having set a common framework where both AE and TE can fit, we can now point out the two 

places in the framework where these disciplines differ, i.e. a) the approach followed to create 

the formal model, and b) the specific process used to derive logical implications from the 

assumptions in the model. We elaborate on these (related) differences in the next section. 
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2.2 Inference using computer simulation 

It is better to be vaguely right than exactly wrong – Read (1914) 

 

Figure 6 illustrates the two main differences between TE and AE, i.e. the approach followed to 

build the formal model, and the inference method used to derive logical implications with the 

model. This derivation is purely deductive in TE and deductive-inductive in AE. 

 

 

Figure 6. Methodological differences between Theoretical Economics and Artificial Economics. 
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Let us use the term direct model to denote the model that has been created trying to establish 

the strongest correspondence between the entities in the real-world and the entities in the 

model. This is a subjective and somewhat fuzzy concept but will be useful for our discussion.12 

 

Generally, models in TE can be considered modifications of the direct model made to ensure 

mathematical tractability. Some examples of simplifications traditionally imposed in TE are: 

networks of global interaction (every agent interacts with every other agent), perfect 

information, or common knowledge of rationality. These modifications may be reduced or even 

eliminated as mathematical techniques develop, or as researchers realize that the direct model, 

or some aspects of it, may be amenable to mathematical analysis. As a matter of fact, in recent 

years there have been various theoretical advances that allow for a rigorous mathematical 

treatment of models that consider e.g. local networks of interaction, and which do not impose 

perfect information or common knowledge of rationality. These advances reduce the gap 

between the modified model and the direct model, establishing a stronger correspondence 

between the modified model and the real world.  

 

The approach followed in Artificial Economics is different. Researchers in AE deal with the 

direct model without modifications. If the direct model is not amenable to mathematical 

analysis, then the derivation of logical implications is conducted using a computer simulation 

approach. This approach consists of two sequential stages: compilation of many simulation 

runs and statistical inference. 

 

The first stage consists in running the direct model for different particularisations of the 

variables that the model contains.13 Importantly, each realisation of the model is obtained 

following a purely deductive process (i.e. applying the inference rules to the axioms and to 

previously derived propositions), but only after having replaced every variable with a particular 

value so the computer can be used.14 Each of these runs constitutes a logical singular statement 

(Mauhe, 2020),15 i.e. a valid observation about the direct model, but with a very limited scope, 

 

12 Our direct model corresponds to what Cioffi-Revilla (2010) calls final model. 

13 Sometimes it is not possible to implement the direct model in a computer; in that case, the artificial model becomes only an 

approximation of the direct model. An example would be a direct model that uses real arithmetic. Real arithmetic is approximated by 

floating-point arithmetic in most computer platforms, and this can have undesirable consequences (Polhill, Izquierdo and Gotts, 2005, 

2006; Izquierdo and Polhill, 2006).  
14 In particular, if the model is stochastic then each computer simulation run is conducted with a specific realisation of each and every 

random variable in the model. 
15 In stark contrast, the theoretical approach does not particularise any variables and uses pure logical deduction only. Thus, the 

conclusions obtained with this approach follow with logical necessity from the premises in the formal model, and can therefore be 
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since every input variable has been replaced with a particular value. In this sense, each 

simulation run can be seen as a theorem (Axtell, 2000; Leombruni and Richiardi, 2005; Epstein, 

2006a, 2006b; Richiardi et al., 2006; Richiardi, 2012), i.e. a logical implication of the direct 

model where particular values of every input variable have been included as additional axioms.  

 

Once a sufficient number of samples have been obtained, we can proceed to the second stage, 

which consists in inferring general patterns about the behaviour of the model using statistical 

inference. Naturally, this inductive process can only lead to probable –rather than necessarily 

true– conclusions (unless, of course, all possible particular instances are explored), since it tries 

to infer general properties out of particular instances.16  

 

This computer simulation approach has been followed to draw Figure 4: pure deduction first 

(i.e. sampling the stochastic model 106 times) and inductive inference subsequently (i.e. 

statistical inference using 106 samples, leading to very low standard errors). 17 The result is a 

statistical statement about the direct model, i.e. a probability distribution that approximates the 

real probability distribution of the final segregation index (which we called X above). This 

statistical statement can be considered valid with a certain degree of confidence which can be 

quantified and assessed using statistical analysis (Izquierdo et al. 2013).  

3 Why Artificial Economics? 

If people do not believe that mathematics is simple, it is only because they do not realize how 

complicated life is – John von Neumann 

 

The main reason to follow the Artificial Economics approach is that computer simulation 

allows us to explore the logical implications of assumptions that we cannot analyse using 

mathematical deduction only. The price we have to pay when using computer simulation is the 

loss of confidence in the validity of the conclusions thus obtained.  

 

 

applied to any particularisation of the variables included in it. In other words, the theoretical approach leads to logical universal 

statements about the model.  
16 By “probable” we mean that the conclusion is justified without assuring it to be true, i.e. we do not use the term in the sense used 

in probability theory. For a discussion of this issue, see Czerwiński (1958).  
17 The combined use of deduction and induction is considered by some authors as a third way of doing science (Axelrod, 1997; 

Squazzoni, 2010). 
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In more concrete terms, Table 1 outlines some of the differences in the type of assumptions 

traditionally investigated in TE and those typically addressed in AE. These differences are so 

fundamental that many scholars (e.g. Batten 2000, Tesfatsion 2002, 2006 and Richiardi 2012) 

see them as the defining features of AE.18 Here we understand that the difference is 

methodological, since it seems obvious that TE also advances towards the analysis of more 

realistic assumptions… as long as the method used to derive their logical implications is pure 

mathematical deduction. 

 

Traditional restrictions in Theoretical Economics  Features typically addressed in Artificial Economics 

Representative agent  

or a continuum of agents 

 Explicit and individual representation of agents (agent-

based modelling) 

Rationality (and sometimes  

common knowledge of rationality) 

 Adaptation at the individual level (learning) or at the 

population level (evolution). Satisficing (Simon, 1957) 

Perfect information  Local and asymmetric information 

Focus on static equilibria   Focus on out-of-equilibrium dynamics 

Determinism  Stochasticity 

Top-down analysis   Bottom-up synthesis 

Random or complete  

networks of interaction 

 Arbitrary (and potentially endogenous)  

networks of interaction 

Minor role of physical space  Explicit representation of physical space 

Infinite populations  Finite populations 

Preference for uniqueness of solutions  Path dependency and historical contingency 

Table 1. Traditional restrictions imposed in Theoretical Economics vs. Features that can be 

explored using the AE approach. 

 

Different authors have emphasized the role of computer simulation either as a complement or 

as an alternative to mathematical analysis (Axtell, 2000; Gotts, Polhill and Law, 2003; Epstein, 

2006b; Richiardi, 2012). Bearing in mind that the ultimate goal is to derive some conclusion 

about a real-world process, both the TE approach and the AE approach have advantages and 

issues. The TE approach has the advantage of providing general results that are necessarily true 

for the formal model, but these results will not be very useful if the correspondence between 

the formal model and the real model is not solid. In Keynes' (1936, chapter 21) words: 

 

Too large a proportion of recent "mathematical" economics are mere concoctions, as 

imprecise as the initial assumptions they rest on, which allow the author to lose sight of the 

 

18 Tesfatsion (2002, 2006) and Richiardi (2012) provide overviews of the field of Agent-based Computational Economics, which we 

consider almost synonymous to AE, as explained in section 2. 
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complexities and interdependencies of the real world in a maze of pretentious and unhelpful 

symbols. 

 

On the other hand, following the AE approach we can explore more realistic models, but the 

conclusions obtained with them will only be probable (i.e. statistically valid), not necessarily 

true. So, under either approach, the final conclusions will be at best educated conjectures about 

the real process under interest. A priori, there does not seem any reason to believe that either 

approach will work better than the other.  

 

There is an interesting situation discussed by Mauhe (2020) where the lack of logical necessity 

of AE conclusions may not be much of an issue. Consider a statement about a socio-economic 

process which is widely believed to be true, no matter for what reason. An example could be: 

“A clearly distinctive pattern of spatial segregation implies that individuals have strong 

segregationist preferences”. Now consider the Schelling-Sakoda model described in section 2 

above. Simulations of this model prove that it is possible to observe strong spatial segregation 

with only mildly segregationist preferences, and this constitutes evidence against the widely 

believed statement. This type of falsification does not require logical necessity, much in the 

same way that a single counterexample can prove that a universal statement is false. Naturally, 

the more robust the computational result, the more compelling the evidence against the 

prevailing belief. In the case of Schelling-Sakoda example, the observed result is very robust 

to changes in parameter values and in basic assumptions (see Aydinonat (2007) and references 

therein); this robustness, together with the simplicity of the model, contribute to explain why 

the model has been so successful (Hegselmann, 2017). Mauhe (2020) shows that the success 

of other well-known AE models may be explained in terms of their capacity to generate 

falsifying evidence against prevailing beliefs. 

 

The AE approach can also be useful to advance our understanding of theoretical models in at 

least three important ways: by characterizing certain aspects of their behaviour which may not 

be amenable to mathematical treatment, by analysing their robustness to changes in 

fundamental assumptions, and by generating conjectures that in the future may be proved using 

mathematical analysis.  

 

Finally, computational models can also be used to promote the usefulness and applicability of 

theoretical analysis. An example of this would be the famous computational tournaments 
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organized by Axelrod (1984). Some of the results obtained in these tournaments were obvious 

for expert game theorists and some conclusions derived from them have even been proved to 

be wrong (see Binmore (1998) and Gotts, Polhill and Law (2003) for excellent discussions on 

the topic), but at the same time it is also inescapable that Axelrod’s work has been instrumental 

in extending the general interest and appreciation for Game Theory, and has even contributed 

to develop the field further. 

4 How can we do Artificial Economics? 

If I have seen further it is by standing on the shoulders of Giants – Newton (1675) 

 

In this section we provide three guidelines to researchers willing to improve our understanding 

of socioeconomic processes, which we believe is the common goal of both AE and TE. 

 

1. Jump on the shoulders of the intellectual giants that have preceded us. Oftentimes, the 

assumptions used in TE are not as stringent as they may seem, and their methods and results – 

developed and perfected over many years by countless brilliant minds– can be usefully applied 

in many contexts. Thus, we consider of great importance to become familiar with the great 

body of knowledge developed in TE, and with the mathematical methods it employs. We also 

believe that it is best to avoid unfounded critiques to this discipline. To be concrete, the 

following are examples of common unfounded critiques to TE that AE practitioners would be 

better off eluding: 

– The alleged assumption of selfishness in mainstream Economics. There is no assumption 

in TE that dictates that people’s preferences are formed in complete disregard of each 

other’s interests. On the contrary, preferences are assumed to account for anything, i.e. 

they may include altruistic motivations, moral principles, or social constraints (Colman, 

1995, p. 301; Vega-Redondo, 2003, p. 7; Binmore and Shaked, p. 88; Binmore, 2011, p. 

8; Gintis, 2014, p. 7). 

– The belief that maximization of utility is the driver of choice. Mainstream Economics does 

not assume that people have a utility function inside their heads which they try to 

maximize. The departing point in Economics (formalized in the theory of revealed 

preferences) is observed behaviour, i.e. the actual choices made by individuals. If these 
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choices are consistent19 and stable, they can be represented by a utility function. Thus, 

utility functions are just a convenient mathematical device to summarise (consistent and 

stable) choices. In short, in mainstream Economics it is not assumed that “an agent 

chooses A rather than B because the utility of A is greater than the utility of B”, but rather 

the opposite, i.e.  “it is because the agent chooses A rather than B, that it is said that the 

agent prefers A to B, and a greater utility is assigned to A” (Binmore, 2011, 2015). 

– The belief that being rational implies being able to optimize hyper-complex utility 

functions. In the absence of uncertainty, an agent is considered rational in mainstream 

Economics if his choices are stable and consistent (i.e. if it acts as if it had a preference 

relation which is complete, transitive and independent of irrelevant alternatives).20 Nothing 

more is implied by rationality in the absence of uncertainty.  

– The belief that no concept from Mainstream Economics can be useful in AE. Many 

concepts developed in TE (such as Nash equilibria) are very useful to analyse the dynamics 

of evolutionary systems, even though these dynamics do not include the simplifying 

assumptions that gave origin to those concepts. As an example, all Nash equilibria are rest 

points of imitative evolutionary game dynamics; moreover, under a wide range of hybrid 

protocols, the sets of rest points and Nash equilibria are identical (Sandholm, 2010, chapter 

5). 

 

2. Find a balance between realism and traceability from assumptions to consequents. As 

explained above, we see models as tools that are useful to derive implications that will 

hopefully correspond to causal mechanisms in the real world. The computational approach 

allows us to explore the logical implications of assumptions that are not amenable to 

mathematical analysis, but a model where we cannot trace which assumptions are responsible 

for the observed implications is unlikely to help in suggesting interesting causal relations in the 

real world. Because of this, we find that excessively complex models that are hard to 

understand are unlikely to provide useful explanations for real-world processes. Above, we 

have sketched several criteria that can be used to assess the usefulness of formal implications 

and of causal inferences (e.g. generality of antecedents, logical validity of the inference, etc.). 

These criteria may be useful in deciding how complex we want a model to be.  

 

19 Consistency requires completeness, transitivity and independence of irrelevant alternatives. 
20 Regarding the transitivity of preferences, it is worth noting that an agent with intransitive preferences cannot survive in a market 

(or evolutionary) context (see the “money pump argument” in Binmore (2011, 13-4)). 
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3. Combine computer simulation and mathematical analysis. Both computer simulation and 

mathematical analysis are extremely useful tools to investigate formal models, and they are 

certainly complementary in the sense that they can provide fundamentally different insights on 

the same model. Even more importantly, there are plenty of synergies to be exploited by using 

the two techniques together (Izquierdo et al., 2013). Thus, it becomes clear that mathematical 

analysis and computer simulation should not be regarded as alternative –or even opposed– 

approaches to the formal study of social systems, but as complementary. The following is a list 

of four mathematical theories that we consider very useful to analyse and understand the 

dynamics of computer models: 

– Markov chain theory, to analyse dynamics of formal models (Kulkarni, 2009). 

– Network theory, to analyse arbitrary networks of socioeconomic interactions (Jackson, 

2010; Newman, 2010). 

– Evolutionary and learning game theory, to investigate adaptation and its relation with 

rationality (Weibull, 1995; Vega-Redondo, 2003; Sandholm, 2010). 

– Stochastic approximation, to analyse noisy systems and path dependency (Kushner and 

Yin, 1997; Sandholm, 2010). 

 

5 Conclusions 

In this paper we have presented a critical review on the distinguishing features of Artificial 

Economics, its potential usefulness and its relation with Theoretical Economics. Our view is 

that Artificial Economics and Theoretical Economics share the same goals, do not differ as 

much as it is sometimes perceived, and their approaches are certainly complementary. 
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