
An Introduction to ABED:
Agent-Based Simulation

of Evolutionary Game Dynamics.
Online Appendix

Luis R. Izquierdo∗, Segismundo S. Izquierdo†, and William H. Sandholm‡

November 12, 2018

Contents

I Monte Carlo simulations in ABED using BehaviorSpace 1

II Parameter tables 4

I. Monte Carlo simulations in ABED using BehaviorSpace

In this appendix, we explain how to run Monte Carlo experiments in ABED using
BehaviorSpace (Wilensky and Shargel, 2002).1 To create a computational experiment in
ABED, go to Tools > BehaviorSpace in the NetLogo top menu, and click on New to open
a window like the one shown in Figure 1. The first field in the window allows one
to set a name for the experiment, while the second, larger field is where one specifies

∗Department of Civil Engineering, Universidad de Burgos.
†Department of Industrial Organization, Universidad de Valladolid.
‡Department of Economics, University of Wisconsin.
1It is also possible to link NetLogo with R (R Core Team, 2018), Python (Python Software Foundation,

2018), Mathematica (Wolfram Research, Inc., 2018), and Matlab (MathWorks, Inc., 2018). Specifically, using
an R package called RNetLogo (Thiele (2014); Thiele et al. (2014, 2012a,b)), one can run and control NetLogo
models and execute NetLogo commands and queries from within R. The connector PyNetLogo (Jaxa-Rozen
and Kwakkel, 2018) provides the same functionalty for Python, and the so-called Mathematica link (Bakshy
and Wilensky, 2007) for Mathematica. Conversely, one can also call R, Python and Matlab commands from
within NetLogo using the R-Extension (Thiele and Grimm, 2010), the NetLogo Python extension (Head, 2018)
and MatNet (Biggs and Papin, 2013), respectively.

Figure 1: A BehaviorSpace window used to administer a computational experiment.

–2–

the parameter values to be considered. Initially, this second field contains the names of
all parameters in ABED with their current values, surrounded by square brackets (e.g.,
[“n-of-agents” 20]). To explore several values of one parameter, one simply includes
those values in the appropriate list (e.g., [“n-of-agents” 20 200 2000]). One can specify
parameter values as a loop using the syntax [“name-of-parameter” [start increment end]].
(Note the additional brackets.) For instance, writing [“n-of-agents” [100 10 200]] would
run simulations with 100, 110, 120, . . . , and 200 agents. If multiple values are specified for
more than one parameter, then BehaviorSpace will consider all possible combinations of
the specified parameter values. For each combination, BehaviorSpace will run the number
of simulations specified in the “Repetitions” field.

The next field specifies the information that will be extracted from each simulation
run, written in NetLogo language. For instance, to obtain the proportion of players using
strategy 1, we should write:

count players with [strategy = 1] / n-of-agents

The information detailed in this field will be gathered either at every tick, or only at the
very end of each simulation, depending on whether or not the box labeled “Measure runs
at every step” is checked.

The field labeled “Setup commands” must be filled with the name of the functions
that should be executed just once at the beginning of each simulation run. When using
ABED, one should enter startup here. The field labeled “Go commands” includes the
names of the functions that will be executed repeatedly, i.e. in every tick. In ABED, this
field should contain go. One can also run specific functions at the end of each simulation
run—for instance, to export plots to files—by using the field “Final commands”.

Each simulation will be run for the number of ticks specified in the field labeled “Time
limit”. It is possible to define other termination conditions by writing suitable NetLogo
code.

Once the experiment is set up, it is saved by clicking on “OK”. To run an experiment,
select it in the main BehaviorSpace window and click on “Run”. As the experiment pro-
ceeds, NetLogo will save all the requested data in a csv file whose name and location are
chosen by the user.

Finally, it is worth mentioning that computational experiments set up with Behav-
iorSpace can be run from the command line, i.e. without having to open NetLogo’s graphi-
cal user interface. This feature is particularly useful for launching large-scale experiments
in computer clusters.

–3–

II. Parameter tables

Game, population size and initial state
Game Initial state Population size

payoff-matrix =
[[0 3]

[1 2]]
random-initial-condition? = off (n-of-agents← 20)
initial-condition = [10 10]

Assignment of revision opportunities
use-prob-revision? = off n-of-revisions-per-tick = 1

Revision protocol
Candidate selection Matching Decision method

candidate-selection = imitative complete-matching? = off decision-method = best
n-of-candidates = 2 n-of-trials = 1 tie-breaker = stick-uniform

prob-mutation = 0

Table 1: Simulation parameters for Figure 5 (Section 3.1).

Game, population size and initial state
Game Initial state Population size

payoff-matrix =
[[0 −1 2]

[2 0 −1]
[−1 2 0]]

random-initial-condition? = on n-of-agents = 50

Assignment of revision opportunities
use-prob-revision? = off n-of-revisions-per-tick = 1

Revision protocol
Candidate selection Matching Decision method

candidate-selection = imitative complete-matching? = on decision-method = linear-dissatisfaction
(n-of-candidates← 2) (n-of-trials← 49) prob-mutation = 0

Table 2: Simulation parameters for figures 6, 7, and 8 (Section 3.2).

–4–

Game, population size and initial state
Game Initial state Population size

payoff-matrix =
[[0 −2 1]

[1 0 −2]
[−2 1 0]]

random-initial-condition? = on n-of-agents = 100

Assignment of revision opportunities
use-prob-revision? = off n-of-revisions-per-tick = 1

Revision protocol
Candidate selection Matching Decision method

candidate-selection = direct complete-matching? = on decision-method = best
n-of-candidates = 3 (n-of-trials← 99) tie-breaker = uniform

prob-mutation = 0

Table 3: Simulation parameters for Figure 10 (Section 3.4).

Game, population size and initial state
Game Initial state

payoff-matrix =

[[0 0 0 0 1]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]]

random-initial-condition? = off
initial-condition = [200 200 200 200 200]

Population size
(n-of-agents← 1000)

Assignment of revision opportunities
use-prob-revision? = off n-of-revisions-per-tick = 10

Revision protocol
Candidate selection Matching Decision method

candidate-selection = imitative complete-matching? = off decision-method = pairwise-difference
(n-of-candidates← 2) n-of-trials = 1 prob-mutation = 10−3

Table 4: Simulation parameters for Figure 11 (Section 3.5). In Figure 11(ii), the parameter prob-mutation is
changed to 10−4.

–5–

Game, population size and initial state
Game Initial state

payoff-matrix =

[[1 1 1 1]
[1 1 1 1]
[0 1 1 1]
[0 0 1 2]]

random-initial-condition? = off
initial-condition = [100 0 0 0]

Population size
(n-of-agents← 100)

Assignment of revision opportunities
use-prob-revision? = off n-of-revisions-per-tick = 1

Revision protocol
Candidate selection Matching Decision method

candidate-selection = imitative complete-matching? = on decision-method = best
n-of-candidates = 2 (n-of-trials← 99) tie-breaker = random-walk

prob-mutation = 10−3

Table 5: Simulation parameters for figures 12 and 13 (Section 3.6). The panels of Figure 13 use four
different specifications of the parameter tie-breaker.

Game, population size and initial state
Game Population size

payoff-matrix =

[[[0 0] [0 0] [0 0] [0 0] [0 0] [0 0]]
[[-1 3] [2 2] [2 2] [2 2] [2 2] [2 2]]
[[-1 3] [1 5] [4 4] [4 4] [4 4] [4 4]]
[[-1 3] [1 5] [3 7] [6 6] [6 6] [6 6]]
[[-1 3] [1 5] [3 7] [5 9] [8 8] [8 8]]
[[-1 3] [1 5] [3 7] [5 9] [7 11] [10 10]]]

pop-1-n-of-agents = 500
pop-2-n-of-agents = 500

Initial state
random-initial-condition? = on

Assignment of revision opportunities
use-prob-revision? = off n-of-revisions-per-tick = 50

Revision protocol
Candidate selection Matching Decision method

candidate-selection = direct complete-matching? = off decision-method = best
pop-1-n-of-candidates = 6 n-of-trials = 1 tie-breaker = min
pop-2-n-of-candidates = 6 single-sample? = on prob-mutation = 10−3

Table 6: Simulation parameters for Figure 15 (Section 3.8). The parameter single-sample? is switched
from on to off mid-run.

–6–

References

Bakshy, E. and Wilensky, U. (2007). NetLogo-Mathematica link. Software.
http://ccl.northwestern.edu/netlogo/mathematica.html. Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Biggs, M. B. and Papin, J. A. (2013). Novel multiscale modeling tool applied to pseu-
domonas aeruginosa biofilm formation. PLOS ONE, 8(10).

Head, B. (2018). Netlogo python extension. Software. https://github.com/qiemem/
PythonExtension.

Jaxa-Rozen, M. and Kwakkel, J. H. (2018). PyNetlogo: Linking Netlogo with Python.
Journal of Artificial Societies and Social Simulation, 21(2):4.

MathWorks, Inc. (2018). Matlab. Software. https://mathworks.com. Natick, Mas-
sachusetts.

Python Software Foundation (2018). Python. Software. http://www.python.org.

R Core Team (2018). R: A language and environment for statistical computing. Software.
https://www.R-project.org.

Thiele, J. C. (2014). R marries NetLogo: Introduction to the RNetLogo package. Journal of
Statistical Software, 58(2):1–41.

Thiele, J. C. and Grimm, V. (2010). NetLogo meets R: Linking agent-based models with a
toolbox for their analysis. Environmental Modelling & Software, 25(8):972 – 974.

Thiele, J. C., Kurth, W., and Grimm, V. (2012a). Agent-based modelling: Tools for linking
NetLogo and R. Journal of Artificial Societies and Social Simulation, 15(3):8.

Thiele, J. C., Kurth, W., and Grimm, V. (2012b). RNetLogo: An R package for running and
exploring individual-based models implemented in NetLogo. Methods in Ecology and
Evolution, 3(3):480–483.

Thiele, J. C., Kurth, W., and Grimm, V. (2014). Facilitating parameter estimation and
sensitivity analysis of agent-based models: A cookbook using NetLogo and R. Journal
of Artificial Societies and Social Simulation, 17(3):11.

Wilensky, U. and Shargel, B. (2002). BehaviorSpace. Software.
http://ccl.northwestern.edu/netlogo/behaviorspace.html. Center for Con-
nected Learning and Computer-Based Modeling, Northwestern University, Evanston,
IL.

Wolfram Research, Inc. (2018). Mathematica. Software. https://www.wolfram.com.
Champaign, Illinois.

–7–

https://github.com/qiemem/PythonExtension
https://github.com/qiemem/PythonExtension
https://mathworks.com
http://www.python.org
https://www.R-project.org
https://www.wolfram.com

	Monte Carlo simulations in ABED using BehaviorSpace
	Parameter tables

